Recommendations to enhance rigor and reproducibility in biomedical research

被引:40
作者
Brito, Jaqueline J. [1 ]
Li, Jun [2 ]
Moore, Jason H. [3 ]
Greene, Casey S. [4 ,5 ]
Nogoy, Nicole A. [6 ]
Garmire, Lana X. [2 ]
Mangul, Serghei [1 ,7 ]
机构
[1] Univ Southern Calif, Sch Pharm, Dept Clin Pharm, 1985 Zonal Ave, Los Angeles, CA 90089 USA
[2] Univ Michigan, Sch Med, Dept Computat Med & Bioinformat, 1301 Catherine St, Ann Arbor, MI 48109 USA
[3] Univ Penn, Inst Biomed Informat, Dept Biostat Epidemiol & Informat, 3700 Hamilton Walk, Philadelphia, PA 19104 USA
[4] Univ Penn, Perelman Sch Med, Dept Syst Pharmacol & Translat Therapeut, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[5] Alexs Lemonade Stand, Childhood Canc Data Lab, 1429 Walnut St,Floor 10, Philadelphia, PA 19102 USA
[6] GigaScience, Shek Mun, 26-F,Kings Wing Plaza 2,1 Kwan St, Hong Kong, Peoples R China
[7] Univ Southern Calif, Quantitat & Computat Biol, Los Angeles, CA 90089 USA
来源
GIGASCIENCE | 2020年 / 9卷 / 06期
关键词
rigor; reproducible research; installability; archival stability; big data; open science; BIOINFORMATICS;
D O I
10.1093/gigascience/giaa056
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biomedical research depends increasingly on computational tools, but mechanisms ensuring open data, open software, and reproducibility are variably enforced by academic institutions, funders, and publishers. Publications may present software for which source code or documentation are or become unavailable; this compromises the role of peer review in evaluating technical strength and scientific contribution. Incomplete ancillary information for an academic software package may bias or limit subsequent work. We provide 8 recommendations to improve reproducibility, transparency, and rigor in computational biology-precisely the values that should be emphasized in life science curricula. Our recommendations for improving software availability, usability, and archival stability aim to foster a sustainable data science ecosystem in life science research.
引用
收藏
页数:6
相关论文
共 10 条
  • [1] Data sharing and the future of science
    不详
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [2] Celebrating parasites
    Greene, Casey S.
    Garmire, Lana X.
    Gilbert, Jack A.
    Ritchie, Marylyn D.
    Hunter, Lawrence E.
    [J]. NATURE GENETICS, 2017, 49 (04) : 483 - 484
  • [3] Challenges and recommendations to improve the installability and archival stability of omics computational tools
    Mangul, Serghei
    Mosqueiro, Thiago
    Abdill, Richard J.
    Duong, Dat
    Mitchell, Keith
    Sarwal, Varuni
    Hill, Brian
    Brito, Jaqueline
    Littman, Russell Jared
    Statz, Benjamin
    Lam, Angela Ka-Mei
    Dayama, Gargi
    Grieneisen, Laura
    Martin, Lana S.
    Flint, Jonathan
    Eskin, Eleazar
    Blekhman, Ran
    [J]. PLOS BIOLOGY, 2019, 17 (06)
  • [4] How bioinformatics and open data can boost basic science in countries and universities with limited resources
    Mangul, Serghei
    Martin, Lana S.
    Langmead, Ben
    Sanchez-Galan, Javier E.
    Toma, Ian
    Hormozdiari, Fereydoun
    Pevzner, Pavel
    Eskin, Eleazar
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (03) : 324 - 326
  • [5] Addressing the Digital Divide in Contemporary Biology: Lessons from Teaching UNIX
    Mangul, Serghei
    Martin, Lana S.
    Hoffmann, Alexander
    Pellegrini, Matteo
    Eskin, Eleazar
    [J]. TRENDS IN BIOTECHNOLOGY, 2017, 35 (10) : 901 - 903
  • [6] Tools and techniques for computational reproducibility
    Piccolo, Stephen R.
    Frampton, Michael B.
    [J]. GIGASCIENCE, 2016, 5
  • [7] Ten Simple Rules for Reproducible Computational Research
    Sandve, Geir Kjetil
    Nekrutenko, Anton
    Taylor, James
    Hovig, Eivind
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (10)
  • [8] An empirical analysis of journal policy effectiveness for computational reproducibility
    Stodden, Victoria
    Seiler, Jennifer
    Ma, Zhaokun
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (11) : 2584 - 2589
  • [9] Comment: The FAIR Guiding Principles for scientific data management and stewardship
    Wilkinson, Mark D.
    Dumontier, Michel
    Aalbersberg, IJsbrand Jan
    Appleton, Gabrielle
    Axton, Myles
    Baak, Arie
    Blomberg, Niklas
    Boiten, Jan-Willem
    Santos, Luiz Bonino da Silva
    Bourne, Philip E.
    Bouwman, Jildau
    Brookes, Anthony J.
    Clark, Tim
    Crosas, Merce
    Dillo, Ingrid
    Dumon, Olivier
    Edmunds, Scott
    Evelo, Chris T.
    Finkers, Richard
    Gonzalez-Beltran, Alejandra
    Gray, Alasdair J. G.
    Groth, Paul
    Goble, Carole
    Grethe, Jeffrey S.
    Heringa, Jaap
    't Hoen, Peter A. C.
    Hooft, Rob
    Kuhn, Tobias
    Kok, Ruben
    Kok, Joost
    Lusher, Scott J.
    Martone, Maryann E.
    Mons, Albert
    Packer, Abel L.
    Persson, Bengt
    Rocca-Serra, Philippe
    Roos, Marco
    van Schaik, Rene
    Sansone, Susanna-Assunta
    Schultes, Erik
    Sengstag, Thierry
    Slater, Ted
    Strawn, George
    Swertz, Morris A.
    Thompson, Mark
    van der Lei, Johan
    van Mulligen, Erik
    Velterop, Jan
    Waagmeester, Andra
    Wittenburg, Peter
    [J]. SCIENTIFIC DATA, 2016, 3
  • [10] Bioinformatics programs are 31-fold over-represented among the highest impact scientific papers of the past two decades
    Wren, Jonathan D.
    [J]. BIOINFORMATICS, 2016, 32 (17) : 2686 - 2691