Periodic Function as Activation Function for Neural Networks

被引:0
作者
Xu, Ding [1 ]
Guan, Yue [1 ]
Cai, Ping-ping [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Software Engn, Wuhan 430074, Peoples R China
来源
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: TECHNIQUES AND APPLICATIONS, AITA 2016 | 2016年
关键词
Machine learning; Neural network; Convolutional neural network; Activation function;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we explore the periodic function as alternative activation function for neural network. Previously sigmoid function is used as standard activation function for neuron and now linear rectifier function are used. Even max-out function can be learned as a general form convex activation function. We explore the possibility in the other direction, where we use periodic function as activation function. We expect network with less layer and less neuron can capture the target distribution. The experiments verify our expectation and show that period function can act as an alternative activation function.
引用
收藏
页码:179 / 183
页数:5
相关论文
共 11 条
  • [1] Aizenberg I., 2011, COMPLEX VALUED NEURA, P173
  • [2] Periodic Activation Function and a Modified Learning Algorithm for the Multivalued Neuron
    Aizenberg, Igor
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (12): : 1939 - 1949
  • [3] Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
  • [4] Glorot X., 2011, P 14 INT C ARTIFICIA, P315
  • [5] Goodfellow I, 2013, JMLR W CP, P1319
  • [6] MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS
    HORNIK, K
    STINCHCOMBE, M
    WHITE, H
    [J]. NEURAL NETWORKS, 1989, 2 (05) : 359 - 366
  • [7] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [8] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    [J]. NATURE, 2015, 521 (7553) : 436 - 444
  • [9] Maas A. L., 2013, P ICML, V30, P3, DOI DOI 10.1016/0010-0277(84)90022-2
  • [10] Nvidia C., 2008, Programming guide