All-Polymer Solar Cells: Recent Progress, Challenges, and Prospects

被引:481
|
作者
Wang, Gang [1 ,2 ]
Melkonyan, Ferdinand S. [1 ,2 ]
Facchetti, Antonio [1 ,2 ,3 ]
Marks, Tobin J. [1 ,2 ]
机构
[1] Northwestern Univ, Dept Chem, Mat Res Ctr, 2145 Sheridan Rd, Evanston, IL 60208 USA
[2] Northwestern Univ, Argonne Northwestern Solar Energy Res Ctr, 2145 Sheridan Rd, Evanston, IL 60208 USA
[3] Flexterra Corp, 8025 Lamon Ave, Skokie, IL 60077 USA
关键词
all-polymer solar cells; bulk heterojunction; morphology engineering; organic photovoltaics; stability; SMALL-MOLECULE ACCEPTOR; CONJUGATED POLYMER; DONOR-POLYMER; PERFORMANCE; EFFICIENCY; WEIGHT; OPTIMIZATION; AGGREGATION; GENERATION; MORPHOLOGY;
D O I
10.1002/anie.201808976
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For over two decades bulk-heterojunction polymer solar cell (BHJ-PSC) research was dominated by donor:acceptor BHJ blends based on polymer donors and fullerene molecular acceptors. This situation has changed recently, with non-fullerene PSCs developing very rapidly. The power conversion efficiencies of non-fullerene PSCs have now reached over 15%, which is far above the most efficient fullerene-based PSCs. Among the various non-fullerene PSCs, all-polymer solar cells (APSCs) based on polymer donor-polymer acceptor BHJs have attracted growing attention, due to the following attractions: 1) large and tunable light absorption of the polymer donor/polymer acceptor pair; 2) robustness of the BHJ film morphology; 3) compatibility with large scale/large area manufacturing; 4) long-term stability of the cell to external environmental and mechanical stresses. This Minireview highlights the opportunities offered by APSCs, selected polymer families suitable for these devices with optimization to enhance the performance further, and discusses the challenges facing APSC development for commercial applications.
引用
收藏
页码:4129 / 4142
页数:14
相关论文
共 50 条
  • [21] Recent Progress of All Polymer Solar Cells with Efficiency Over 15%
    Zhang, Lu
    Yao, Zhigang
    Wang, Hanyu
    Zhang, Jian
    Ma, Xiaoling
    Zhang, Fujun
    SOLAR RRL, 2023, 7 (12)
  • [22] High efficiency all-polymer tandem solar cells
    Yuan, Jianyu
    Gu, Jinan
    Shi, Guozheng
    Sun, Jianxia
    Wang, Hai-Qiao
    Ma, Wanli
    SCIENTIFIC REPORTS, 2016, 6
  • [23] Quantification of Photophysical Processes in All-Polymer Bulk Heterojunction Solar Cells
    Balawi, Ahmed H.
    Kan, Zhipeng
    Gorenflot, Julien
    Guarracino, Paola
    Chaturvedi, Neha
    Privitera, Alberto
    Liu, Shengjian
    Gao, Yajun
    Franco, Lorenzo
    Beaujuge, Pierre
    Laquai, Frederic
    SOLAR RRL, 2020, 4 (06)
  • [24] Polythiophene Derivatives for Efficient All-Polymer Solar Cells
    An, Mingwei
    Bai, Qingqing
    Jeong, Sang Young
    Ding, Jianwei
    Zhao, Chaoyue
    Liu, Bin
    Liang, Qiming
    Wang, Yimei
    Zhang, Guangye
    Woo, Han Young
    Qiu, Xiaohui
    Niu, Li
    Guo, Xugang
    Sun, Huiliang
    ADVANCED ENERGY MATERIALS, 2023, 13 (30)
  • [25] Efficient All-Polymer Solar Cells based on a New Polymer Acceptor Achieving 10.3% Power Conversion Efficiency
    Yao, Huatong
    Bai, Fujin
    Hu, Huawei
    Arunagiri, Lingeswaran
    Zhang, Jianquan
    Chen, Yuzhong
    Yu, Han
    Chen, Shangshang
    Liu, Tao
    Lai, Joshua Yuk Lin
    Zou, Yingping
    Ade, Harald
    Yan, He
    ACS ENERGY LETTERS, 2019, 4 (02): : 417 - 422
  • [26] 15.4% Efficiency all-polymer solar cells
    Long Zhang
    Tao Jia
    Langheng Pan
    Baoqi Wu
    Zaiyu Wang
    Ke Gao
    Feng Liu
    Chunhui Duan
    Fei Huang
    Yong Cao
    Science China Chemistry, 2021, 64 : 408 - 412
  • [27] 7.7% Efficient All-Polymer Solar Cells
    Hwang, Ye-Jin
    Courtright, Brett A. E.
    Ferreira, Amy S.
    Tolbert, Sarah H.
    Jenekhe, Samson A.
    ADVANCED MATERIALS, 2015, 27 (31) : 4578 - 4584
  • [28] 15.4% Efficiency all-polymer solar cells
    Zhang, Long
    Jia, Tao
    Pan, Langheng
    Wu, Baoqi
    Wang, Zaiyu
    Gao, Ke
    Liu, Feng
    Duan, Chunhui
    Huang, Fei
    Cao, Yong
    SCIENCE CHINA-CHEMISTRY, 2021, 64 (03) : 408 - 412
  • [29] Understanding the molecular mechanisms of the differences in the efficiency and stability of all-polymer solar cells
    Wu, Qiang
    Wang, Wei
    Chen, Zeng
    Xia, Xinxin
    Gao, Mengyuan
    Shen, Hao
    Zhu, Haiming
    Lu, Xinhui
    Ye, Long
    Xia, Jianlong
    Min, Jie
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (05) : 1850 - 1861
  • [30] Tailoring polymer acceptors by electron linkers for achieving efficient and stable all-polymer solar cells
    Wu, Qiang
    Wang, Wei
    Wu, Yao
    Sun, Rui
    Guo, Jing
    Shi, Mumin
    Min, Jie
    NATIONAL SCIENCE REVIEW, 2022, 9 (02)