Integrated simulations of H-mode operation in ITER including core fuelling, divertor detachment and ELM control

被引:38
作者
Polevoi, A. R. [1 ]
Loarte, A. [1 ]
Dux, R. [2 ]
Eich, T. [2 ]
Fable, E. [2 ]
Coster, D. [2 ]
Maruyama, S. [1 ]
Medvedev, S. Yu. [3 ]
Koechl, F. [4 ]
Zhogolev, V. E. [5 ]
机构
[1] ITER Org, Route Vinon Sur Verdon, F-13067 St Paul Les Durance, France
[2] Max Planck Inst Plasma Phys, Boltzmanstr 2, D-85748 Garching, Germany
[3] Keldysh Inst Appl Math, Miusskaya 4, Moscow 125047, Russia
[4] Tech Univ Wien, Atominst, Stadionallee 2, A-1020 Vienna, Austria
[5] NRC Kurchatov Inst, Kurchatov Sq 1, Moscow 123182, Russia
关键词
ITER; fuelling; ELM mitigation; divertor; tungsten; integrated simulations; ENERGY; JET;
D O I
10.1088/1741-4326/aab4ad
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
ELM mitigation to avoid melting of the tungsten (W) divertor is one of the main factors affecting plasma fuelling and detachment control at full current for high Q operation in ITER. Here we derive the ITER operational space, where ELM mitigation to avoid melting of the W divertor monoblocks top surface is not required and appropriate control of W sources and radiation in the main plasma can be ensured through ELM control by pellet pacing. We apply the experimental scaling that relates the maximum ELM energy density deposited at the divertor with the pedestal parameters and this eliminates the uncertainty related with the ELM wetted area for energy deposition at the divertor and enables the definition of the ITER operating space through global plasma parameters. Our evaluation is thus based on this empirical scaling for ELM power loads together with the scaling for the pedestal pressure limit based on predictions from stability codes. In particular, our analysis has revealed that for the pedestal pressure predicted by the EPED1 + SOLPS scaling, ELM mitigation to avoid melting of the W divertor monoblocks top surface may not be required for 2.65 T H-modes with normalized pedestal densities (to the Greenwald limit) larger than 0.5 to a level of current of 6.5-7.5 MA, which depends on assumptions on the divertor power flux during ELMs and between ELMs that expand the range of experimental uncertainties. The pellet and gas fuelling requirements compatible with control of plasma detachment, core plasma tungsten accumulation and H-mode operation (including post-ELM W transient radiation) have been assessed by 1.5D transport simulations for a range of assumptions regarding W re-deposition at the divertor including the most conservative assumption of zero prompt re-deposition. With such conservative assumptions, the post-ELM W transient radiation imposes a very stringent limit on ELM energy losses and the associated minimum required ELM frequency. Depending on W transport assumptions during the ELM, a maximum ELM frequency is also identified above which core tungsten accumulation takes place.
引用
收藏
页数:11
相关论文
共 20 条
[1]   Monte Carlo simulations of tungsten redeposition at the divertor target [J].
Chankin, A. V. ;
Coster, D. P. ;
Dux, R. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (02)
[2]   SOLPS modelling of W arising from repetitive mitigated ELMs in ITER [J].
Coster, D. P. ;
Chankin, A. V. ;
Klingshirn, H. -J. ;
Dux, R. ;
Fable, E. ;
Bonnin, X. ;
Kukushkin, A. ;
Loarte, A. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :620-623
[3]   The influence of an ITER-like wall on disruptions at JET [J].
de Vries, P. C. ;
Baruzzo, M. ;
Hogeweij, G. M. D. ;
Jachmich, S. ;
Joffrin, E. ;
Lomas, P. J. ;
Matthews, G. F. ;
Murari, A. ;
Nunes, I. ;
Puetterich, T. ;
Reux, C. ;
Vega, J. .
PHYSICS OF PLASMAS, 2014, 21 (05)
[4]   The interplay of controlling the power exhaust and the tungsten content in ITER [J].
Dux, R. ;
Loarte, A. ;
Angioni, C. ;
Coster, D. ;
Fable, E. ;
Kallenbach, A. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :28-35
[5]  
Dux R., 2014, 25 IAEA FUS EN C SAI
[6]   ELM divertor peak energy fluence scaling to ITER with data from JET, MAST and ASDEX upgrade [J].
Eich, T. ;
Sieglin, B. ;
Thornton, A. J. ;
Faitsch, M. ;
Kirk, A. ;
Herrmann, A. ;
Suttrop, W. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. ;
Ash, A. ;
Asp, E. ;
Asunta, O. ;
Atanasiu, C. V. ;
Austin, Y. ;
Avotina, L. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :84-90
[7]   Type-I ELM power deposition profile width and temporal shape in JET [J].
Eich, T. ;
Thomsen, H. ;
Fundamenski, W. ;
Arnoux, G. ;
Brezinsek, S. ;
Devaux, S. ;
Herrmann, A. ;
Jachmich, S. ;
Rapp, J. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) :S856-S859
[8]   Surface heat loads on the ITER divertor vertical targets [J].
Gunn, J. P. ;
Carpentier-Chouchana, S. ;
Escourbiac, F. ;
Hirai, T. ;
Panayotis, S. ;
Pitts, R. A. ;
Corre, Y. ;
Dejarnac, R. ;
Firdaouss, M. ;
Kocan, M. ;
Komm, M. ;
Kukushkin, A. ;
Languille, P. ;
Missirlian, M. ;
Zhao, W. ;
Zhong, G. .
NUCLEAR FUSION, 2017, 57 (04)
[9]   Overview on stationary and transient divertor heat loads [J].
Herrmann, A .
PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (06) :883-903
[10]   Simulation of high-Z impurity behaviour for ITER operational scenarios using the ZIMPUR impurity code [J].
Leonov, VM ;
Zhogolev, VE .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (06) :903-918