The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae

被引:105
作者
Jeppsson, M
Bengtsson, O
Franke, K
Lee, H
Hahn-Hägerdal, R
Gorwa-Grauslund, MF
机构
[1] Lund Univ, Dept Appl Microbiol, SE-22100 Lund, Sweden
[2] Univ Guelph, Dept Environm Biol, Guelph, ON N1G 2W1, Canada
关键词
xylose reductase; Saccharomyces cerevisiae; site-specific mutagenesis; xylitol; NAD(P)H;
D O I
10.1002/bit.20737
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Xylose fermentation by Saccharomyces cerevisiae requires the introduction of a xylose pathway, either similar to that found in the natural xylose-utilizing yeasts Pichia stipitis and Candida shehatae or similar to the bacterial pathway. The use of NAD(P)H-dependent XR and NAD(+)-dependent XDH from P. stipitis creates a cofactor imbalance resulting in xylitol formation. The effect of replacing the native P. stipitis XR with a mutated XR with increased K-M for NADPH (Kostrzynska et al., 1998: FEMS Microbiol Lett 159:107-112) was investigated for xylose fermentation to ethanol by recombinant S. cerevisiae strains. Enhanced ethanol yields accompanied by decreased xylitol yields were obtained in strains carrying the mutated XR. Flux analysis showed that strains harboring the mutated XR utilized a larger fraction of NADH for xylose reduction. The overproduction of the mutated XR resulted in an ethanol yield of 0.40 g per gram of sugar and a xylose consumption rate of 0.16 g per gram of biomass per hour in chemostat culture (0.06/h) with 10 g/L glucose and 10 g/L xylose as carbon source. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:665 / 673
页数:9
相关论文
共 43 条
[1]   Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation [J].
Albers, E ;
Larsson, C ;
Liden, G ;
Niklasson, C ;
Gustafsson, L .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (09) :3187-3195
[2]   THE FERMENTATION OF XYLOSE - AN ANALYSIS OF THE EXPRESSION OF BACILLUS AND ACTINOPLANES XYLOSE ISOMERASE GENES IN YEAST [J].
AMORE, R ;
WILHELM, M ;
HOLLENBERG, CP .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1989, 30 (04) :351-357
[3]  
Ausubel FM, 1995, CURRENT PROTOCOLS MO
[4]   MOLECULAR-CLONING, DNA-STRUCTURE AND EXPRESSION OF THE ESCHERICHIA-COLI D-XYLOSE ISOMERASE [J].
BRIGGS, KA ;
LANCASHIRE, WE ;
HARTLEY, BS .
EMBO JOURNAL, 1984, 3 (03) :611-616
[5]   NADH-LINKED ALDOSE REDUCTASE - THE KEY TO ANAEROBIC ALCOHOLIC FERMENTATION OF XYLOSE BY YEASTS [J].
BRUINENBERG, PM ;
DEBOT, PHM ;
VANDIJKEN, JP ;
SCHEFFERS, WA .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1984, 19 (04) :256-260
[6]   Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures [J].
Eliasson, A ;
Christensson, C ;
Wahlbom, CF ;
Hahn-Hägerdal, B .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (08) :3381-3386
[7]   The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae [J].
Gárdonyi, M ;
Hahn-Hägerdal, B .
ENZYME AND MICROBIAL TECHNOLOGY, 2003, 32 (02) :252-259
[8]   NEW YEAST-ESCHERICHIA-COLI SHUTTLE VECTORS CONSTRUCTED WITH INVITRO MUTAGENIZED YEAST GENES LACKING 6-BASE PAIR RESTRICTION SITES [J].
GIETZ, RD ;
SUGINO, A .
GENE, 1988, 74 (02) :527-534
[9]   A new efficient gene disruption cassette for repeated use in budding yeast [J].
Guldener, U ;
Heck, S ;
Fiedler, T ;
Beinhauer, J ;
Hegemann, JH .
NUCLEIC ACIDS RESEARCH, 1996, 24 (13) :2519-2524
[10]   XYLITOL PRODUCTION BY RECOMBINANT SACCHAROMYCES-CEREVISIAE [J].
HALLBORN, J ;
WALFRIDSSON, M ;
AIRAKSINEN, U ;
OJAMO, H ;
HAHNHAGERDAL, B ;
PENTTILA, M ;
KERANEN, S .
BIO-TECHNOLOGY, 1991, 9 (11) :1090-1095