Sunlight-thin nanophotonic monocrystalline silicon solar cells

被引:22
作者
Depauw, Valerie [1 ]
Trompoukis, Christos [1 ,2 ,3 ]
Massiot, Ines [4 ]
Chen, Wanghua [5 ]
Dmitriev, Alexandre [4 ,6 ,7 ]
Roca i Cabarrocas, Pere [5 ]
Gordon, Ivan [1 ]
Poortmans, Jef [1 ,2 ,8 ]
机构
[1] IMEC, Silicon Photovolta, Kapeldreef 75, B-3001 Leuven, Belgium
[2] Univ Leuven, Dept Elektrotech ESAT, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
[3] Univ Ghent, Photon Res Grp, iGent, Technol Pk Zwijnaarde 15, Ghent, Belgium
[4] Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden
[5] Univ Paris Saclay, Ecole Polytech, CNRS, LPICM, F-91128 Palaiseau, France
[6] Univ Gothenburg, Dept Phys, SE-41296 Gothenburg, Sweden
[7] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA
[8] UHasselt, Martelarenlaan 42, B-3500 Hasselt, Belgium
关键词
photovoltaics; light trapping; nanophotonics; colloidal lithography; crystalline-silicon film; NANOSTRUCTURES; MANAGEMENT;
D O I
10.1088/2399-1984/aa7d7c
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Introducing nanophotonics into photovoltaics sets the path for scaling down the surface texture of crystalline-silicon solar cells from the micro- to the nanoscale, allowing to further boost the photon absorption while reducing silicon material loss. However, keeping excellent electrical performance has proven to be very challenging, as the absorber is damaged by the nanotexturing and the sensitivity to the surface recombination is dramatically increased. Here we realize a light-wavelength-scale nanotextured monocrystalline silicon cell with the confirmed efficiency of 8.6% and an effective thickness of only 830 nm. For this we adopt a self-assembled large-area and industry-compatible amorphous ordered nanopatterning, combined with an advanced surface passivation, earning strongly enhanced solar light absorption while retaining efficient electron collection. This prompts the development of highly efficient flexible and semitransparent photovoltaics, based on the industrially mature monocrystalline silicon technology.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Investigation on significant efficiency enhancement of thin crystalline silicon solar cells
    Xie, Guanglin
    Zhang, Zhen
    Han, Xinshuo
    Ma, Shengjie
    Zang, Yue
    Wang, Lu
    Yan, Wensheng
    [J]. JOURNAL OF PHOTONICS FOR ENERGY, 2023, 13 (03)
  • [32] Effect of diffracting grating on the performance of thin film silicon solar cells
    Saravanan, S.
    Dubey, R. S.
    Kalainathan, S.
    [J]. MATERIALS TODAY-PROCEEDINGS, 2016, 3 (06) : 2284 - 2288
  • [33] Efficient light-trapping nanostructures in thin silicon solar cells
    Han, Sang Eon
    Mavrokefalos, Anastassios
    Branham, Matthew Sanders
    Chen, Gang
    [J]. MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS III, 2011, 8031
  • [34] THIN-FILM SILICON SOLAR CELLS: STABILITY AND LIGHT TRAPPING
    Zeman, M.
    van Elzakker, G.
    Sutta, P.
    Isabella, O.
    Krc, J.
    [J]. INFORMACIJE MIDEM-JOURNAL OF MICROELECTRONICS ELECTRONIC COMPONENTS AND MATERIALS, 2009, 39 (04): : 223 - 230
  • [35] Front side plasmonic effect on thin silicon epitaxial solar cells
    El Daif, Ounsi
    Tong, Lianming
    Figeys, Bruno
    Van Nieuwenhuysen, Kris
    Dmitriev, Alexander
    Van Dorpe, Pol
    Gordon, Ivan
    Dross, Frederic
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 104 : 58 - 63
  • [36] Recent developments of silicon thin film solar cells on glass substrates
    Beneking, C
    Rech, B
    Wieder, S
    Kluth, O
    Wagner, H
    Frammelsberger, W
    Geyer, R
    Lechner, P
    Rübel, H
    Schade, H
    [J]. THIN SOLID FILMS, 1999, 351 (1-2) : 241 - 246
  • [37] Angular behavior of the absorption limit in thin film silicon solar cells
    Naqavi, Ali
    Haug, Franz-Josef
    Soederstroem, Karin
    Battaglia, Corsin
    Paeder, Vincent
    Scharf, Toralf
    Herzig, Hans Peter
    Ballif, Christophe
    [J]. PROGRESS IN PHOTOVOLTAICS, 2014, 22 (11): : 1147 - 1158
  • [38] Light trapping in thin silicon solar cells: A review on fundamentals and technologies
    Saive, Rebecca
    [J]. PROGRESS IN PHOTOVOLTAICS, 2021, 29 (10): : 1125 - 1137
  • [39] ZnO Transparent conductive oxide for thin film silicon solar cells
    Soederstroem, T.
    Domine, D.
    Feltrin, A.
    Despeisse, M.
    Meillaud, F.
    Bugnon, G.
    Boccard, M.
    Cuony, P.
    Haug, F-J
    Fay, S.
    Nicolay, S.
    Ballif, C.
    [J]. OXIDE-BASED MATERIALS AND DEVICES, 2010, 7603
  • [40] INVESTIGATION OF TRAPPED LIGHT IN THIN-FILM SILICON SOLAR CELLS
    Beckers, T.
    Bittkau, K.
    Carius, R.
    [J]. JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2010, 19 (04) : 645 - 651