Architecture Engineering of Hierarchically Porous Chitosan/Vacuum-Stripped Graphene Scaffold as Bioanode for High Performance Microbial Fuel Cell

被引:164
作者
He, Ziming [1 ]
Liu, Jing [1 ]
Qiao, Yan [2 ,3 ]
Li, Chang Ming [1 ,2 ,3 ]
Tan, Timothy Thatt Yang [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
[2] Southwest Univ, Inst Clean Energy & Adv Mat, Chongqing 400715, Peoples R China
[3] Chongqing Key Lab Adv Mat & Technol Clean Energie, Chongqing 400715, Peoples R China
关键词
Vacuum-stripped graphene; chitosan; ice segregation induced self-assembly; hierarchically porous; microbial fuel cell; ANODE; COMPOSITE; GRAPHITE; COLI;
D O I
10.1021/nl302175j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The bioanode is the defining feature of microbial fuel cell (MFC) technology and often limits its performance. In the current work, we report the engineering of a novel hierarchically porous architecture as an efficient bioanode, consisting of biocompatible chitosan and vacuum-stripped graphene (CHI/VSG). With the hierarchical pores and unique VSG, an optimized bioanode delivered a remarkable maximum power density of 1530 mW m(-2) in a mediator-less MFC, 78 times higher than a carbon cloth anode.
引用
收藏
页码:4738 / 4741
页数:4
相关论文
共 22 条
[1]   Ionic liquid-graphene composite for ultratrace explosive trinitrotoluene detection [J].
Guo, Chun Xian ;
Lu, Zhi Song ;
Lei, Yu ;
Li, Chang Ming .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (09) :1237-1240
[2]   Biocompatible MWCNT scaffolds for immobilization and proliferation of E. coli [J].
Instituto de Ciencia de Materiales de Madrid - ICMM, Consejo Superior de Investigaciones Científicas - CSIC, Cantoblanco, 28049, Madrid, Spain ;
不详 .
J. Mater. Chem., 2007, 29 (2992-2995) :2992-2995
[3]   Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies [J].
He, Zhen ;
Mansfeld, Florian .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (02) :215-219
[4]   Three-dimensional microchanelled electrodes in flow-through configuration for bioanode formation and current generation [J].
Katuri, Krishna ;
Luisa Ferrer, M. ;
Gutierrez, Maria C. ;
Jimenez, Ricardo ;
del Monte, Francisco ;
Leech, Donal .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :4201-4210
[5]   A competitive candidate material for aqueous supercapacitors: High surface-area graphite [J].
Li, Hui-Qiao ;
Wang, Yong-Gang ;
Wang, Cong-Xiao ;
Xia, Yong-Yao .
JOURNAL OF POWER SOURCES, 2008, 185 (02) :1557-1562
[6]   Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells [J].
Liu, Jing ;
Qiao, Yan ;
Guo, Chun Xian ;
Lim, Sierin ;
Song, Hao ;
Li, Chang Ming .
BIORESOURCE TECHNOLOGY, 2012, 114 :275-280
[7]   Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells [J].
Logan, Bruce ;
Cheng, Shaoan ;
Watson, Valerie ;
Estadt, Garett .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (09) :3341-3346
[8]   Exoelectrogenic bacteria that power microbial fuel cells [J].
Logan, Bruce E. .
NATURE REVIEWS MICROBIOLOGY, 2009, 7 (05) :375-381
[9]  
Lovley DR, 2006, NAT REV MICROBIOL, V4, P497, DOI 10.1038/nrmicro1442
[10]   Vertically Grown Multiwalled Carbon Nanotube Anode and Nickel Silicide Integrated High Performance Microsized (1.25 μL) Microbial Fuel Cell [J].
Mink, Justine E. ;
Rojas, Jhonathan P. ;
Logan, Bruce E. ;
Hussain, Muhammad M. .
NANO LETTERS, 2012, 12 (02) :791-795