An area-type nonmonotone filter method for nonlinear constrained optimization

被引:0
作者
Su, Ke [1 ,2 ]
Lu, Wei [1 ,2 ]
Liu, Shaohua [1 ,2 ]
机构
[1] Hebei Univ, Coll Math & Informat Sci, Baoding, Peoples R China
[2] Hebei Univ, Key Lab Machine Learning & Computat Intelligence, Baoding, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 12期
基金
中国国家自然科学基金;
关键词
area -type filter; trust; -region; nonlinear programming; monotone; nonmonotone; TRUST REGION ALGORITHM; SQP ALGORITHM; CONVERGENCE;
D O I
10.3934/math.20221120
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define a new area-type filter algorithm based on the trust-region method. A relaxed trust-region quadratic correction subproblem is proposed to compute the trial direction at the current point. Consider the objective function and the constraint violation function at the current point as a point pair. We divide the point pairs into different partitions by the dominant region of the filter and calculate the contributions of the point pairs to the area of the filter separately. Different from the conventional filter, we define the contribution as the filter acceptance criterion for the trial point. The nonmonotone area-average form is also adopted in the filter mechanism. In this paper, monotone and nonmonotone methods are proposed and compared with the numerical values. Furthermore, the algorithm is proved to be convergent under some reasonable assumptions. The numerical experiment shows the effectiveness of the algorithm.
引用
收藏
页码:20441 / 20460
页数:20
相关论文
共 38 条
[1]   A competitive inexact nonmonotone filter SQP method: convergence analysis and numerical results [J].
Ahmadzadeh, Hani ;
Mahdavi-Amiri, Nezam .
OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (04) :1310-1343
[2]   Trust-region and other regularisations of linear least-squares problems [J].
Cartis, C. ;
Gould, N. I. M. ;
Toint, P. L. .
BIT NUMERICAL MATHEMATICS, 2009, 49 (01) :21-53
[3]   An interior-point trust-funnel algorithm for nonlinear optimization [J].
Curtis, Frank E. ;
Gould, Nicholas I. M. ;
Robinson, Daniel P. ;
Toint, Philippe L. .
MATHEMATICAL PROGRAMMING, 2017, 161 (1-2) :73-134
[4]   A modified filter nonmonotone adaptive retrospective trust region method [J].
Ding, Xianfeng ;
Qu, Quan ;
Wang, Xinyi .
PLOS ONE, 2021, 16 (06)
[5]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[6]   THE USE OF LINEAR-PROGRAMMING FOR THE SOLUTION OF SPARSE SETS OF NONLINEAR EQUATIONS [J].
DUFF, IS ;
NOCEDAL, J ;
REID, JK .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (02) :99-108
[7]   An improved trust region algorithm for nonlinear equations [J].
Fan, Jinyan ;
Pan, Jianyu .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 48 (01) :59-70
[8]   On the global convergence of a filter SQP algorithm [J].
Fletcher, R ;
Leyffer, S ;
Toint, PL .
SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (01) :44-59
[9]   Nonlinear programming without a penalty function [J].
Fletcher, R ;
Leyffer, S .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :239-269
[10]   SNOPT: An SQP algorithm for large-scale constrained optimization (Reprinted from SIAM Journal Optimization, vol 12, pg 979-1006, 2002) [J].
Gill, PE ;
Murray, W ;
Saunders, MA .
SIAM REVIEW, 2005, 47 (01) :99-131