The consistency strength of successive cardinals with the tree property

被引:12
作者
Foreman, M [1 ]
Magidor, M
Schindler, RD
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[4] Univ Vienna, Inst Formale Log, A-1090 Vienna, Austria
关键词
D O I
10.2307/2694979
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If omega (n) has the tree property for all 2 less than or equal to n less than or equal to omega and 2(< aleph omega) = aleph (omega) then for all X is an element of H-aleph omega and n < omega, M-n(#)(X) exists.
引用
收藏
页码:1837 / 1847
页数:11
相关论文
共 18 条
[1]   ARONSZAJN TREES ON CHI-2 AND CHI-3 [J].
ABRAHAM, U .
ANNALS OF PURE AND APPLIED LOGIC, 1983, 24 (03) :213-230
[2]  
CUMMINGS J, TREE PROPERTY
[3]  
DEVLIN K, LECT NOTES MATH, V499, P976
[4]  
JECH T, 1978, SET THEORY
[5]  
Jensen R. B., 1972, Ann. Math. Logic, V4, P229
[6]  
Mitchell W., 1972, Annals of Mathematical Logic, V5, P21, DOI DOI 10.1016/0003-4843(72)90017-4
[7]  
Mitchell WJ, 1995, MATH RES LETT, V2, P595
[8]   OPTIMAL PROOFS OF DETERMINACY [J].
Neeman, Itay .
BULLETIN OF SYMBOLIC LOGIC, 1995, 1 (03) :327-339
[9]  
SCHIDLER RD, 1996, BONNER MATH SCHRIFTE
[10]   A finite family weak square principle [J].
Schimmerling, E .
JOURNAL OF SYMBOLIC LOGIC, 1999, 64 (03) :1087-1110