Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network

被引:199
作者
Aoki, Tomonori [1 ]
Yamada, Atsuo [1 ]
Aoyama, Kazuharu [2 ]
Saito, Hiroaki [3 ]
Tsuboi, Akiyoshi [4 ]
Nakada, Ayako [1 ]
Niikura, Ryota [1 ]
Fujishiro, Mitsuhiro [1 ,5 ]
Oka, Shiro [4 ]
Ishihara, Soichiro [6 ,7 ,8 ]
Matsuda, Tomoki [3 ]
Tanaka, Shinji [4 ]
Koike, Kazuhiko [1 ]
Tada, Tomohiro [2 ,6 ,8 ]
机构
[1] Univ Tokyo, Dept Gastroenterol, Grad Sch Med, Tokyo, Japan
[2] AI Med Serv Inc, Tokyo, Japan
[3] Sendai Kousei Hosp, Dept Gastroenterol, Sendai, Miyagi, Japan
[4] Hiroshima Univ Hosp, Dept Endoscopy, Hiroshima, Japan
[5] Univ Tokyo, Dept Endoscopy & Endoscop Surg, Tokyo, Japan
[6] Tada Tomohiro Inst Gastroenterol & Proctol, Saitama, Japan
[7] Int Univ Hlth & Welf, Surg Dept, Sanno Hosp, Tokyo, Japan
[8] Univ Tokyo, Grad Sch Med, Dept Surg Oncol, Tokyo, Japan
基金
日本学术振兴会;
关键词
VALIDATION; CANCER; SYSTEM;
D O I
10.1016/j.gie.2018.10.027
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background and Aims: Although erosions and ulcerations are the most common small-bowel abnormalities found on wireless capsule endoscopy (WCE), a computer-aided detection method has not been established. We aimed to develop an artificial intelligence system with deep learning to automatically detect erosions and ulcerations in WCE images. Methods: We trained a deep convolutional neural network (CNN) system based on a Single Shot Multibox Detector, using 5360 WCE images of erosions and ulcerations. We assessed its performance by calculating the area under the receiver operating characteristic curve and its sensitivity, specificity, and accuracy using an independent test set of 10,440 small-bowel images including 440 images of erosions and ulcerations. Results: The trained CNN required 233 seconds to evaluate 10,440 test images. The area under the curve for the detection of erosions and ulcerations was 0.958 (95% confidence interval [CI], 0.947-0.968). The sensitivity, specificity, and accuracy of the CNN were 88.2% (95% CI, 84.8%-91.0%), 90.9% (95% CI, 90.3%-91.4%), and 90.8% (95% CI, 90.2%-91.3%), respectively, at a cut-off value of 0.481 for the probability score. Conclusions: We developed and validated a new system based on CNN to automatically detect erosions and ulcerations in WCE images. This may be a crucial step in the development of daily-use diagnostic software for WCE images to help reduce oversights and the burden on physicians.
引用
收藏
页码:357 / +
页数:9
相关论文
共 22 条
[1]   Etiology and long-term rebleeding of endoscopic ulcerative lesions in the small bowel in patients with obscure gastrointestinal bleeding: A multicenter cohort study [J].
Aoki, Tomonori ;
Yamada, Atsuo ;
Hirata, Yoshihiro ;
Suzuki, Hirobumi ;
Nakada, Ayako ;
Niikura, Ryota ;
Seto, Motoko ;
Okamoto, Makoto ;
Koike, Kazuhiko .
JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2018, 33 (07) :1327-1334
[2]   Development and Validation of a Risk Scoring System for Severe Acute Lower Gastrointestinal Bleeding [J].
Aoki, Tomonori ;
Nagata, Naoyoshi ;
Shimbo, Takuro ;
Niikura, Ryota ;
Sakurai, Toshiyuki ;
Moriyasu, Shiori ;
Okubo, Hidetaka ;
Sekine, Katsunori ;
Watanabe, Kazuhiro ;
Yokoi, Chizu ;
Yanase, Mikio ;
Akiyama, Junichi ;
Mizokami, Masashi ;
Uemura, Naomi .
CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2016, 14 (11) :1562-+
[3]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[4]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[5]   Single center experience of capsule endoscopy in patients with obscure gastrointestinal bleeding [J].
Goenka, Mahesh Kumar ;
Majumder, Shounak ;
Kumar, Sanjeev ;
Sethy, Pradeepta Kumar ;
Goenka, Usha .
WORLD JOURNAL OF GASTROENTEROLOGY, 2011, 17 (06) :774-778
[6]  
Graham DY, 2005, CLIN GASTROENTEROL H, V3, P55, DOI 10.1016/S1542-3565(04)00603-2
[7]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[8]   Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images [J].
Hirasawa, Toshiaki ;
Aoyama, Kazuharu ;
Tanimoto, Tetsuya ;
Ishihara, Soichiro ;
Shichijo, Satoki ;
Ozawa, Tsuyoshi ;
Ohnishi, Tatsuya ;
Fujishiro, Mitsuhiro ;
Matsuo, Keigo ;
Fujisaki, Junko ;
Tada, Tomohiro .
GASTRIC CANCER, 2018, 21 (04) :653-660
[9]   Automatic lesion detection in capsule endoscopy based on color saliency: closer to an essential adjunct for reviewing software [J].
Iakovidis, Dimitris K. ;
Koulaouzidis, Anastasios .
GASTROINTESTINAL ENDOSCOPY, 2014, 80 (05) :877-883
[10]   Wireless capsule endoscopy [J].
Iddan, G ;
Meron, G ;
Glukhovsky, A ;
Swain, P .
NATURE, 2000, 405 (6785) :417-417