OPTIMED: iterative optimization for large-scale inverse problems in medical imaging

被引:0
|
作者
Chaari, Lotfi [1 ]
Chouzenoux, Emilie
Pustelnik, Nelly [3 ]
Chaux, Caroline [2 ]
Moussaoui, Said [4 ]
机构
[1] INRIA Rhone Alpes, Projet MISTIS, Paris, France
[2] Univ Paris Est, IGM, UMR CNRS 8049, Lab Informat, Paris, France
[3] ENS Lyon, UMR CNRS 5672, Phys Lab, Lyon, France
[4] LUNAM Univ, Ecole Cent Nantes, IRCCyN, UMR CNRS 6597, Nantes, France
关键词
convex optimization; iterative algorithms; PET; MRI; 2D-NMR; CONJUGATE-GRADIENT METHODS; MAXIMUM-ENTROPY; THRESHOLDING ALGORITHM; INTEGRAL-EQUATIONS; GLOBAL CONVERGENCE; 1ST KIND; RECONSTRUCTION; REGULARIZATION; RECOVERY; MINIMIZATION;
D O I
10.3166/TS.28.329-374
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with image reconstruction using iterative algorithms. The framework under consideration involves large amount of data and/or large observation operator We proposed here algorithms for which we were able to state convergence proofs. The reliability and accuracy of the proposed approaches are demonstrated via three applications: the positron emission tomography (PET), the parallel magnetic resonance imaging (MRI) and two-dimensional nuclear magnetic resonance (2D NMR).
引用
收藏
页码:329 / 373
页数:45
相关论文
共 50 条
  • [1] GENERALIZED HYBRID ITERATIVE METHODS FOR LARGE-SCALE BAYESIAN INVERSE PROBLEMS
    Chung, Julianne
    Saibaba, Arvind K.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : S24 - S46
  • [2] AN EFFICIENT ITERATIVE APPROACH FOR LARGE-SCALE SEPARABLE NONLINEAR INVERSE PROBLEMS
    Chung, Julianne
    Nagy, James G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 31 (06): : 4654 - 4674
  • [3] Efficient iterative methods for hyperparameter estimation in large-scale linear inverse problems
    Hall-Hooper, Khalil A.
    Saibaba, Arvind K.
    Chung, Julianne
    Miller, Scot M.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (06)
  • [4] An object-oriented optimization framework for large-scale inverse problems
    Biondi, Ettore
    Barnier, Guillaume
    Clapp, Robert G.
    Picetti, Francesco
    Farris, Stuart
    COMPUTERS & GEOSCIENCES, 2021, 154
  • [5] GENERALIZED SUBSPACE METHODS FOR LARGE-SCALE INVERSE PROBLEMS
    OLDENBURG, DW
    MCGILLIVRAY, PR
    ELLIS, RG
    GEOPHYSICAL JOURNAL INTERNATIONAL, 1993, 114 (01) : 12 - 20
  • [6] Solving large-scale optimization problems with EFCOSS
    Bischof, CH
    Bücker, HM
    Lang, B
    Rasch, A
    ADVANCES IN ENGINEERING SOFTWARE, 2003, 34 (10) : 633 - 639
  • [7] Handling Big Data in Medical Imaging: Iterative Reconstruction with Large-Scale Automated Parallel Computation
    Lee, Jae H.
    Yao, Yushu
    Shrestha, Uttam
    Gullberg, Grant T.
    Seo, Youngho
    2014 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2014,
  • [8] Fast iterative implementation of large-scale nonlinear geostatistical inverse modeling
    Liu, Xiaoyi
    Zhou, Quanlin
    Kitanidis, Peter K.
    Birkholzer, Jens T.
    WATER RESOURCES RESEARCH, 2014, 50 (01) : 198 - 207
  • [9] ITERATIVE AGGREGATION - NEW APPROACH TO THE SOLUTION OF LARGE-SCALE PROBLEMS
    VAKHUTINSKY, IY
    DUDKIN, LM
    RYVKIN, AA
    ECONOMETRICA, 1979, 47 (04) : 821 - 841
  • [10] Data-driven Methods for Solving Large-scale Inverse Problems with Applications to Subsurface Imaging
    Lin, Youzuo
    Theiler, James
    Wohlberg, Brendt
    Wu, Yue
    Zhang, Zhongping
    2020 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI 2020), 2020, : 13 - 13