A bulked segregant analysis tool for out-crossing species (BSATOS) and QTL-based genomics-assisted prediction of complex traits in apple

被引:7
作者
Shen, Fei [1 ,2 ,3 ]
Bianco, Luca [2 ]
Wu, Bei [1 ]
Tian, Zhendong [1 ]
Wang, Yi [1 ]
Wu, Ting [1 ]
Xu, Xuefeng [1 ]
Han, Zhenhai [1 ]
Velasco, Riccardo [4 ]
Fontana, Paolo [2 ]
Zhang, Xinzhong [1 ]
机构
[1] China Agr Univ, Coll Hort, Beijing 100193, Peoples R China
[2] Edmund Mach Fdn, Res & Innovat Ctr, I-38010 San Michele All Adige, Italy
[3] Beijing Acad Agr & Forestry Sci, Beijing 100097, Peoples R China
[4] CREA, Res Ctr Viticulture & Enol, Conegliano, Italy
关键词
Genomics-assisted prediction; Bulked segregant analysis; QTL; Apple; SELECTION; RESISTANCE; STRATEGY; YIELD; LOCI;
D O I
10.1016/j.jare.2022.03.013
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Introduction: Genomic heterozygosity, self-incompatibility, and rich-in somatic mutations hinder the molecular breeding efficiency of outcrossing plants.Objectives: We attempted to develop an efficient integrated strategy to identify quantitative trait loci (QTLs) and trait-associated genes, to develop gene markers, and to construct genomics-assisted predic-tion (GAP) modes.Methods: A novel protocol, bulked segregant analysis tool for out-crossing species (BSATOS), is presented here, which is characterized by taking full advantage of all segregation patterns (including AB x AB mark-ers) and haplotype information. To verify the effectiveness of the protocol in dealing with the complex traits of outbreeding species, three apple cross populations with 9,654 individuals were adopted.Results: By using BSATOS, 90, 60, and 77 significant QTLs were identified successfully and candidate genes were predicted for apple fruit weight (FW), fruit ripening date (FRD), and fruit soluble solid content (SSC), respectively. The gene-based markers were developed and genotyped for 1,396 individuals in a training population, including 145 Malus accessions and 1,251 F1 plants of the three full-sib families. GAP models were trained using marker genotype effect estimates of the training population. The predic-tion accuracy was 0.7658, 0.6455, and 0.3758 for FW, FRD, and SSC, respectively.Conclusion: The BSATOS and GAP models provided a convenient and efficient methodology for candidate gene mining and molecular breeding in out-crossing plant species. The BSATOS pipeline can be freely downloaded from: https://github.com/maypoleflyn/BSATOS.(c) 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:149 / 162
页数:14
相关论文
共 79 条
[1]   When less can be better: How can we make genomic selection more cost-effective and accurate in barley? [J].
Abed, Amina ;
Perez-Rodriguez, Paulino ;
Crossa, Jos ;
Belzile, Francois .
THEORETICAL AND APPLIED GENETICS, 2018, 131 (09) :1873-1890
[2]  
Al Kalaldeh M, 2019, GENET SEL EVOL, V51, DOI [10.1186/s12711-019-0476-4, 10.1186/s12711-019-0479-1]
[3]   Accuracy of genomic selection for alfalfa biomass yield in different reference populations [J].
Annicchiarico, Paolo ;
Nazzicari, Nelson ;
Li, Xuehui ;
Wei, Yanling ;
Pecetti, Luciano ;
Brummer, E. Charles .
BMC GENOMICS, 2015, 16
[4]   Accuracy and Training Population Design for Genomic Selection on Quantitative Traits in Elite North American Oats [J].
Asoro, Franco G. ;
Newell, Mark A. ;
Beavis, William D. ;
Scott, M. Paul ;
Jannink, Jean-Luc .
PLANT GENOME, 2011, 4 (02) :132-144
[5]   Genome-wide identification of markers for selecting higher oil content in oil palm [J].
Bai, Bin ;
Wang, Le ;
Lee, May ;
Zhang, Yingjun ;
Rahmadsyah ;
Alfiko, Yuzer ;
Ye, Bao Qing ;
Wan, Zi Yi ;
Lim, Chin Huat ;
Suwanto, Antonius ;
Chua, Nam-Hai ;
Yue, Gen Hua .
BMC PLANT BIOLOGY, 2017, 17
[6]   Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple [J].
Bink, M. C. A. M. ;
Jansen, J. ;
Madduri, M. ;
Voorrips, R. E. ;
Durel, C. -E. ;
Kouassi, A. B. ;
Laurens, F. ;
Mathis, F. ;
Gessler, C. ;
Gobbin, D. ;
Rezzonico, F. ;
Patocchi, A. ;
Kellerhals, M. ;
Boudichevskaia, A. ;
Dunemann, F. ;
Peil, A. ;
Nowicka, A. ;
Lata, B. ;
Stankiewicz-Kosyl, M. ;
Jeziorek, K. ;
Pitera, E. ;
Soska, A. ;
Tomala, K. ;
Evans, K. M. ;
Fernandez-Fernandez, F. ;
Guerra, W. ;
Korbin, M. ;
Keller, S. ;
Lewandowski, M. ;
Plocharski, W. ;
Rutkowski, K. ;
Zurawicz, E. ;
Costa, F. ;
Sansavini, S. ;
Tartarini, S. ;
Komjanc, M. ;
Mott, D. ;
Antofie, A. ;
Lateur, M. ;
Rondia, A. ;
Gianfranceschi, L. ;
van de Weg, W. E. .
THEORETICAL AND APPLIED GENETICS, 2014, 127 (05) :1073-1090
[7]  
Blanpied G D., 1992, Cornell Cooperative Extension
[8]   Validation of SNP markers for fruit quality and disease resistance loci in apple (Malus x domestica Borkh.) using the OpenArray® platform [J].
Chagne, David ;
Vanderzande, Stijn ;
Kirk, Chris ;
Profitt, Natalie ;
Weskett, Rosemary ;
Gardiner, Susan E. ;
Peace, Cameron P. ;
Volz, Richard K. ;
Bassil, Nahla, V .
HORTICULTURE RESEARCH, 2019, 6
[9]   Genetic and environmental control of fruit maturation, dry matter and firmness in apple (Malus X domestica Borkh.) [J].
Chagne, David ;
Dayatilake, Daya ;
Diack, Robert ;
Oliver, Murray ;
Ireland, Hilary ;
Watson, Amy ;
Gardiner, Susan E. ;
Johnston, Jason W. ;
Schaffer, Robert J. ;
Tustin, Stuart .
HORTICULTURE RESEARCH, 2014, 1
[10]   Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce [J].
Chen, Zhi-Qiang ;
Baison, John ;
Pan, Jin ;
Karlsson, Bo ;
Andersson, Bengt ;
Westin, Johan ;
Garcia-Gil, Maria Rosario ;
Wu, Harry X. .
BMC GENOMICS, 2018, 19