On a stochastic nonlinear equation in one-dimensional viscoelasticity

被引:3
作者
Kim, JU [1 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
关键词
viscoelasticity; random force; white noise; pathwise solutions;
D O I
10.1090/S0002-9947-01-02894-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss an initial-boundary value problem for a stochastic nonlinear equation arising in one-dimensional viscoelasticity. We propose to use a new direct method to obtain a solution. This method is expected to be applicable to a broad class of nonlinear stochastic partial differential equations.
引用
收藏
页码:1117 / 1135
页数:19
相关论文
共 19 条
[1]   ON THE EXISTENCE OF SOLUTIONS TO THE EQUATION UTT = UXXT + SIGMA-(UX)X [J].
ANDREWS, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 35 (02) :200-231
[2]   STOCHASTIC NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS [J].
BENSOUSSAN, A ;
TEMAN, ER .
ISRAEL JOURNAL OF MATHEMATICS, 1972, 11 (01) :95-+
[3]  
Bergh J., 1976, INTERPOLATION SPACES
[4]  
Da Prato G, 1992, STOCHASTIC EQUATIONS
[5]   MIXED INITIAL-BOUNDARY VALUE PROBLEM FOR EQUATIONS OF NONLINEAR 1-DIMENSIONAL VISCOELASTICITY [J].
DAFERMOS, CM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1969, 6 (01) :71-&
[6]   On the stochastic Korteweg-deVries equation [J].
de Bouard, A ;
Debussche, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 154 (01) :215-251
[7]   CONCRETE CHARACTERIZATION OF DOMAINS OF FRACTIONAL POWERS OF SOME ELLIPTIC DIFFERENTIAL OPERATORS OF 2ND ORDER [J].
FUJIWARA, D .
PROCEEDINGS OF THE JAPAN ACADEMY, 1967, 43 (02) :82-&
[8]  
GREENBERG JM, 1968, J MATH MECH, V17, P707
[9]  
Lions J. L., 1969, QUELQUES METHODES RE
[10]  
METIVIER M, 1976, B SOC MATH FR, V104, P65