An ADMM Algorithm for Solving l1 Regularized MPC

被引:0
作者
Annergren, Mariette [1 ]
Hansson, Anders [2 ]
Wahlberg, Bo [1 ]
机构
[1] KTH, Sch Elect Engn, Automat Control Lab & ACCESS, SE-10044 Stockholm, Sweden
[2] Linkoping Univ, Dept Elect Engn, Div Automat Control, SE-58183 Linkoping, Sweden
来源
2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC) | 2012年
基金
瑞典研究理事会; 欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an Alternating Direction Method of Multipliers (ADMM) algorithm for solving optimization problems with an l(1) regularized least-squares cost function subject to recursive equality constraints. The considered optimization problem has applications in control, for example in l(1) regularized MPC. The ADMM algorithm is easy to implement, converges fast to a solution of moderate accuracy, and enables separation of the optimization problem into sub-problems that may be solved in parallel. We show that the most costly step of the proposed ADMM algorithm is equivalent to solving an LQ regulator problem with an extra linear term in the cost function, a problem that can be solved efficiently using a Riccati recursion. We apply the ADMM algorithm to an example of l(1) regularized MPC. The numerical examples confirm fast convergence to sufficient accuracy and a linear complexity in the MPC prediction horizon.
引用
收藏
页码:4486 / 4491
页数:6
相关论文
共 25 条
[1]  
Annergren M., ADMM ALGORITHM SOLVI
[2]  
[Anonymous], 2011, CVX MATLAB SOFTWARE
[3]   A Dual Gradient Projection Quadratic Programming Algorithm Tailored for Model Predictive Control [J].
Axehill, Daniel ;
Hansson, Anders .
47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, :3057-3064
[4]   The explicit linear quadratic regulator for constrained systems [J].
Bemporad, A ;
Morari, M ;
Dua, V ;
Pistikopoulos, EN .
AUTOMATICA, 2002, 38 (01) :3-20
[5]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[6]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[7]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[8]   An online active set strategy to overcome the limitations of explicit MPC [J].
Ferreau, H. J. ;
Bock, H. G. ;
Diehl, M. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2008, 18 (08) :816-830
[9]  
Gabay D., 1976, Computers & Mathematics with Applications, V2, P17, DOI 10.1016/0898-1221(76)90003-1
[10]  
Gallieri M., 2012, P AM CONTR IN PRESS