Bilattice Logic for Rough Sets

被引:0
|
作者
Nakayama, Yotaro [1 ]
Akama, Seiki [2 ]
Murai, Tetsuya [3 ]
机构
[1] Nihon Unisys Ltd, Technol Res & Innovat, Koto Ku, 1-1-1 Toyosu, Tokyo 1358560, Japan
[2] C Republ Inc, Asao Ku, 1-20-1 Higashi Yurigaoka, Kawasaki, Kanagawa 2150012, Japan
[3] Chitose Inst Sci & Technol, Fac Sci & Technol, 758-65 Bibi, Chitose, Hokkaido 0668655, Japan
关键词
bilattice; decision logic; four-valued logic; tableau calculi; variable precision rough set;
D O I
10.20965/jaciii.2020.p0774
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rough set theory is studied to manage uncertain and inconsistent information. Because Pawlak's decision logic for rough sets is based on the classical two-valued logic, it is inconvenient for handling inconsistent information. We propose a bilattice logic as the deduction basis for the decision logic of rough sets to address inconsistent and ambiguous information. To enhance the decision logic to bilattice semantics, we introduce Variable Precision Rough Set (VPRS). As a deductive basis for bilattice decision logic, we define a consequence relation for Belnap's four-valued semantics and provide a bilattice semantic tableau TB4 for a deduction system. We demonstrate the soundness and completeness of TB4 and enhance it with weak negation.
引用
收藏
页码:774 / 784
页数:11
相关论文
共 50 条
  • [1] Bilattice Logic for Rough Sets
    Nakayama Y.
    Akama S.
    Murai T.
    Journal of Advanced Computational Intelligence and Intelligent Informatics, 2020, 24 (06): : 774 - 784
  • [2] A logic for rough sets
    Duntsch, I
    THEORETICAL COMPUTER SCIENCE, 1997, 179 (1-2) : 427 - 436
  • [3] Bilattice logic properly displayed
    Greco, Giuseppe
    Liang, Fei
    Palmigiano, Alessandra
    Rivieccio, Umberto
    FUZZY SETS AND SYSTEMS, 2019, 363 : 138 - 155
  • [4] Rough Sets and the Algebra of Conditional Logic
    Panicker, Gayatri
    Banerjee, Mohua
    ROUGH SETS, IJCRS 2019, 2019, 11499 : 28 - 39
  • [5] A logic programming framework for rough sets
    Vitória, A
    Maluszynski, J
    ROUGH SETS AND CURRENT TRENDS IN COMPUTING, PROCEEDINGS, 2002, 2475 : 205 - 212
  • [6] Logic on Similarity Based Rough Sets
    Mihalydeak, Tamas
    ROUGH SETS, IJCRS 2018, 2018, 11103 : 270 - 283
  • [7] Bilattice logic of epistemic actions and knowledge
    Bakhtiari, Zeinab
    van Ditmarsch, Hans
    Rivieccio, Umberto
    ANNALS OF PURE AND APPLIED LOGIC, 2020, 171 (06)
  • [8] LOGIC PROGRAMMING ON A TOPOLOGICAL BILATTICE.
    Fitting, Melvin
    Fundamenta Informaticae, 1988, 11 (02) : 209 - 218
  • [9] Logic for rough sets with rough double stone algebraic semantics
    Dai, JH
    ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, PT 1, PROCEEDINGS, 2005, 3641 : 141 - 148
  • [10] Kripke semantics for modal bilattice logic
    Jung, Achim
    Rivieccio, Umberto
    2013 28TH ANNUAL IEEE/ACM SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2013, : 438 - 447