EXISTENCE OF THREE SOLUTIONS FOR A NAVIER BOUNDARY VALUE PROBLEM INVOLVING THE p(x)-BIHARMONIC

被引:21
作者
Yin, Honghui [1 ]
Liu, Ying [1 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223001, Jiangsu, Peoples R China
关键词
p(x)-biharmonic; three solutions; existence;
D O I
10.4134/BKMS.2013.50.6.1817
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of at least three weak solutions is established for a class of quasilinear elliptic equations involving the p(x)-biharmonic operators with Navier boundary value conditions. The technical approach is mainly based on a. three critical points theorem due to Ricceri [11].
引用
收藏
页码:1817 / 1826
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 1990, NONLINEAR FUNCTION B
[2]  
[Anonymous], 1976, Funct. Approx. Comment. Math.
[3]  
[Anonymous], 2002, ABSTR APPL ANAL, DOI DOI 10.1155/S1085337502000805
[4]   On the spectrum of a fourth order elliptic equation with variable exponent [J].
Ayoujil, A. ;
El Amrouss, A. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4916-4926
[5]   Some remarks on a three critical points theorem [J].
Bonanno, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (04) :651-665
[6]  
El Amrous A., 2009, ELECTRON J DIFFER EQ, V153, P1
[7]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[8]   Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients [J].
Fan, XL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (02) :464-477
[9]   SINGULAR SOLUTIONS OF THE P-LAPLACE EQUATION [J].
KICHENASSAMY, S ;
VERON, L .
MATHEMATISCHE ANNALEN, 1986, 275 (04) :599-615
[10]  
KOVACIK O, 1991, CZECH MATH J, V41, P592