Origins and evolution of CRISPR-Cas systems

被引:294
作者
Koonin, Eugene, V [1 ]
Makarova, Kira S. [1 ]
机构
[1] NLM, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA
关键词
adaptive immunity; mobile genetic elements; signalling; gene shuffling; SELF-SYNTHESIZING TRANSPOSONS; GUIDED SURVEILLANCE COMPLEX; CRYSTAL-STRUCTURE; FUNCTIONAL-CHARACTERIZATION; SPACER ACQUISITION; DNA TRANSPOSONS; IMMUNE-SYSTEMS; KEY PLAYERS; RNA; CLASSIFICATION;
D O I
10.1098/rstb.2018.0087
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-Cas, the bacterial and archaeal adaptive immunity systems, encompass a complex machinery that integrates fragments of foreign nucleic acids, mostly from mobile genetic elements (MGE), into CRISPR arrays embedded in microbial genomes. Transcripts of the inserted segments (spacers) are employed by CRISPR-Cas systems as guide (g) RNAs for recognition and inactivation of the cognate targets. The CRISPR-Cas systems consist of distinct adaptation and effector modules whose evolutionary trajectories appear to be at least partially independent. Comparative genome analysis reveals the origin of the adaptation module from casposons, a distinct type of transposons, which employ a homologue of Cas1 protein, the integrase responsible for the spacer incorporation into CRISPR arrays, as the transposase. The origin of the effector module(s) is far less clear. The CRISPR-Cas systems are partitioned into two classes, class 1 with multisubunit effectors, and class 2 in which the effector consists of a single, large protein. The class 2 effectors originate from nucleases encoded by different MGE, whereas the origin of the class 1 effector complexes remains murky. However, the recent discovery of a signalling pathway built into the type III systems of class 1 might offer a clue, suggesting that type III effector modules could have evolved from a signal transduction system involved in stress-induced programmed cell death. The subsequent evolution of the class 1 effector complexes through serial gene duplication and displacement, primarily of genes for proteins containing RNA recognition motif domains, can be hypothetically reconstructed. In addition to the multiple contributions of MGE to the evolution of CRISPR-Cas, the reverse flow of information is notable, namely, recruitment of minimalist variants of CRISPR-Cas systems by MGE for functions that remain to be elucidated. Here, we attempt a synthesis of the diverse threads that shed light on CRISPR-Cas origins and evolution. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
引用
收藏
页数:16
相关论文
共 50 条
[21]   The ecology and evolution of microbial CRISPR-Cas adaptive immune systems [J].
Westra, Edze R. ;
van Houte, Stineke ;
Gandon, Sylvain ;
Whitaker, Rachel .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2019, 374 (1772)
[22]   Harnessing type I CRISPR-Cas systems for genome engineering in human cells [J].
Cameron, Peter ;
Coons, Mary M. ;
Klompe, Sanne E. ;
Lied, Alexandra M. ;
Smith, Stephen C. ;
Vidal, Bastien ;
Donohoue, Paul D. ;
Rotstein, Tomer ;
Kohrs, Bryan W. ;
Nyer, David B. ;
Kennedy, Rachel ;
Banh, Lynda M. ;
Williams, Carolyn ;
Toh, Mckenzi S. ;
Irby, Matthew J. ;
Edwards, Leslie S. ;
Lin, Chun-Han ;
Owen, Arthur L. G. ;
Kunne, Tim ;
van der Oost, John ;
Brouns, Stan J. J. ;
Slorach, Euan M. ;
Fuller, Chris K. ;
Gradia, Scott ;
Kanner, Steven B. ;
May, Andrew P. ;
Sternberg, Samuel H. .
NATURE BIOTECHNOLOGY, 2019, 37 (12) :1471-+
[23]   Characterization of CRISPR-Cas systems in Bifidobacterium breve [J].
Han, Xiao ;
Zhou, Xingya ;
Pei, Zhangming ;
Stanton, Catherine ;
Ross, R. Paul ;
Zhao, Jianxin ;
Zhang, Hao ;
Yang, Bo ;
Chen, Wei .
MICROBIAL GENOMICS, 2022, 8 (04)
[24]   Characterization of Ligilactobacillus salivarius CRISPR-Cas systems [J].
Roberts, Avery ;
Spang, Daniel ;
Sanozky-Dawes, Rosemary ;
Nethery, Matthew A. ;
Barrangou, Rodolphe .
MSPHERE, 2024, 9 (07)
[25]   Predicting and visualizing features of CRISPR-Cas systems [J].
Nethery, Matthew A. ;
Barrangou, Rodolphe .
CRISPR-CAS ENZYMES, 2019, 616 :1-25
[26]   Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems [J].
Mohanraju, Prarthana ;
Makarova, Kira S. ;
Zetsche, Bernd ;
Zhang, Feng ;
Koonin, Eugene V. ;
van der Oost, John .
SCIENCE, 2016, 353 (6299)
[27]   Epidemiological and evolutionary consequences of different types of CRISPR-Cas systems [J].
Chabas, Helene ;
Mueller, Viktor ;
Bonhoeffer, Sebastian ;
Regoes, Roland R. R. .
PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (07)
[28]   CRISPR-Cas bioinformatics [J].
Alkhnbashi, Omer S. ;
Meier, Tobias ;
Mitrofanov, Alexander ;
Backofen, Rolf ;
Voss, Bjoern .
METHODS, 2020, 172 :3-11
[29]   The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems [J].
Chylinski, Krzysztof ;
Le Rhun, Anais ;
Charpentier, Emmanuelle .
RNA BIOLOGY, 2013, 10 (05) :726-737
[30]   Memory of viral infections by CRISPR-Cas adaptive immune systems: Acquisition of new information [J].
Fineran, Peter C. ;
Charpentier, Emmanuelle .
VIROLOGY, 2012, 434 (02) :202-209