Tiling 3-Uniform Hypergraphs With K43-2e

被引:21
作者
Czygrinow, Andrzej [1 ]
DeBiasio, Louis [2 ]
Nagle, Brendan [3 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
[2] Miami Univ, Dept Math, Oxford, OH 45056 USA
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
基金
美国国家科学基金会;
关键词
hypergraphs; tiling; factor; absorbing; PERFECT MATCHINGS; MINIMUM DEGREE;
D O I
10.1002/jgt.21726
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K-4(3) - 2e denote the hypergraph consisting of two triples on four points. For an integer n, let t(n,K-4(3) - 2e) denote the smallest integer d so that every 3-uniform hypergraph G of order n with minimum pair-degree delta(2)(G) >= d contains [n/4] vertex-disjoint copies of K-4(3)-2e. Kuhn and Osthus (J Combin Theory, Ser B 96(6) (2006), 767-821) proved that t(n, K-4(3) - 2e) = n/4(1 + o(1)) holds for large integers n. Here, we prove the exact counterpart, that for all sufficiently large integers n divisible by 4, t(n, K-4(3) - 2e) = {n/4 when n/4 is odd, n/4 + 1 when n/4 is even. A main ingredient in our proof is the recent "absorption technique" of Rodl, Rucinski, and Szemeredi (J. Combin. Theory Ser. A 116(3) (2009), 613-636). (c) 2013 Wiley Periodicals, Inc. J. Graph Theory 75: 124- 136, 2014
引用
收藏
页码:124 / 136
页数:13
相关论文
共 10 条
[1]   ON EXTREMAL PROBLEMS OF GRAPHS AND GENERALIZED GRAPHS [J].
ERDOS, P .
ISRAEL JOURNAL OF MATHEMATICS, 1964, 2 (03) :183-&
[2]  
HAJNAL A., 1970, Combinatorial Theory and its Applications, V4, P601
[3]  
KEEVASH P, 2011, ARXIV11081757V1
[4]   THE MINIMUM DEGREE THRESHOLD FOR PERFECT GRAPH PACKINGS [J].
Kuehn, Daniela ;
Osthus, Deryk .
COMBINATORICA, 2009, 29 (01) :65-107
[5]   Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree [J].
Kuhn, Daniela ;
Osthus, Deryk .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (06) :767-821
[6]  
LO A, 2011, ARXIV11053411V1
[7]  
LO A, 2011, ARXIV11115334V1
[8]   Perfect matchings and K43-tilings in hypergraphs of large codegree [J].
Pikhurko, Oleg .
GRAPHS AND COMBINATORICS, 2008, 24 (04) :391-404
[9]   Perfect matchings in large uniform hypergraphs with large minimum collective degree [J].
Roedl, Vojtech ;
Rucinski, Andrzej ;
Szemeredi, Endre .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (03) :613-636
[10]   Proof of the ErdAs-Faudree Conjecture on Quadrilaterals [J].
Wang, Hong .
GRAPHS AND COMBINATORICS, 2010, 26 (06) :833-877