On optimal binary codes with unbalanced coordinates

被引:4
|
作者
Ostergard, Patric R. J. [1 ]
机构
[1] Aalto Univ, Sch Elect Engn, Dept Commun & Networking, Aalto 00076, Finland
基金
芬兰科学院;
关键词
Balanced code; Bounds on codes; Classification; Code equivalence; Error-correcting code; Optimal code; ERROR-CORRECTING CODES; UPPER-BOUNDS; BALANCED CODES; FAMILY;
D O I
10.1007/s00200-013-0189-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A coordinate of a binary code of size M is said to be balanced if the number of zero and ones in the coordinate is either or (that is, exactly for even M). Since good codes (of various types) tend to be balanced in all coordinates, various conjectures have been made regarding the existence of such codes. It is here shown that there are parameters for which there are no optimal binary error-correcting codes with a balanced coordinate. This is proved by the code attaining , which is shown to be unique here; denotes the maximum size of a binary code of length n and minimum distance d. It is further shown that .
引用
收藏
页码:197 / 200
页数:4
相关论文
共 50 条
  • [1] On optimal binary codes with unbalanced coordinates
    Patric R. J. Östergård
    Applicable Algebra in Engineering, Communication and Computing, 2013, 24 : 197 - 200
  • [2] Optimal binary codes and binary construction of quantum codes
    Weiliang Wang
    Yangyu Fan
    Ruihu Li
    Frontiers of Computer Science, 2014, 8 : 1024 - 1031
  • [3] Optimal binary codes and binary construction of quantum codes
    Wang, Weiliang
    Fan, Yangyu
    Li, Ruihu
    FRONTIERS OF COMPUTER SCIENCE, 2014, 8 (06) : 1024 - 1031
  • [4] Optimal binary LCD codes
    Stefka Bouyuklieva
    Designs, Codes and Cryptography, 2021, 89 : 2445 - 2461
  • [5] Locality of optimal binary codes
    Fu, Qiang
    Li, Ruihu
    Guo, Luobin
    Lv, Liangdong
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 48 : 371 - 394
  • [6] Optimal binary LCD codes
    Bouyuklieva, Stefka
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (11) : 2445 - 2461
  • [7] Optimal encoding of binary cyclic codes
    Chen, Houshou
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2006, E89B (12) : 3280 - 3287
  • [8] ON OPTIMAL CODES FOR BINARY ASYMMETRIC CHANNELS
    FLATTO, L
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (05) : 695 - 697
  • [9] Mixed covering codes with two binary and four ternary coordinates
    Kolev, E
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, 1995, 948 : 312 - 322
  • [10] Optimal Binary Linear Complementary Pairs of Codes
    Choi, Whan-Hyuk
    Guneri, Cem
    Kim, Jon-Lark
    Ozbudak, Ferruh
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (02): : 469 - 486