Empirical Estimation for Sparse Double-Heteroscedastic Hierarchical Normal Models

被引:0
作者
Shantia, Vida [1 ]
Ghoreishi, S. K. [2 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Dept Stat, Tehran, Iran
[2] Univ Qom, Dept Stat, Fac Sci, Qom, Iran
来源
JOURNAL OF STATISTICAL THEORY AND APPLICATIONS | 2020年 / 19卷 / 02期
关键词
Asymptotic optimality; Heteroscedasticity; Empirical estimators; Sparsity; Stein's unbiased risk estimate (SURE); MINIMAX ESTIMATORS; BAYES; VECTOR; FAMILY;
D O I
10.2991/jsta.d.200422.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The available heteroscedastic hierarchical models perform well for a wide range of real-world data, but for the data sets which exhibit heteroscedasticity mainly due to the lack of constant means rather than unequal variances, the existing models tend to overestimate the variance of the second level model which in turn will cause substantial bias in the parameter estimates. Therefore, in this study, we develop heteroscedastic hierarchical models, called double-heteroscedastic hierarchical models, that take into account the heterogeneity in the means for the second level of the models, in addition to considering the heterogeneity of variance for the first level of the models. In these models, we assume that the vector of means in the second level is sparse. We derive Stein's unbiased risk estimators (SURE) for the parameters in the model based on data decomposition and study their risk properties both in theory and in numerical experiments under the squared loss. The comparison between our SURE estimator and the classical estimators such as empirical Bayes maximum likelihood estimator (EBMLE) and empirical Bayes moment estimator (EBMOM) is illustrated through a simulation study. Finally, we apply our model to a Baseball data set. (c) 2020 The Authors. Published by Atlantis Press SARL.
引用
收藏
页码:148 / 161
页数:14
相关论文
共 50 条
  • [1] Empirical Estimation for Sparse Double-Heteroscedastic Hierarchical Normal Models
    Vida Shantia
    S. K. Ghoreishi
    Journal of Statistical Theory and Applications, 2020, 19 : 148 - 161
  • [2] Empirical estimates for heteroscedastic hierarchical dynamic normal models
    Ghoreishi, S. K.
    Wu, Jingjing
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2021, 50 (02) : 528 - 543
  • [3] Empirical estimates for heteroscedastic hierarchical dynamic normal models
    S. K. Ghoreishi
    Jingjing Wu
    Journal of the Korean Statistical Society, 2021, 50 : 528 - 543
  • [4] Shrinkage estimates for multi-level heteroscedastic hierarchical normal linear models
    Ghoreishi, S. K.
    Mostafavinia, A.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2015, 14 (02): : 204 - 213
  • [5] Shrinkage estimates for multi-level heteroscedastic hierarchical normal linear models
    S. K. Ghoreishi
    A. Mostafavinia
    Journal of Statistical Theory and Applications, 2015, 14 (2): : 204 - 213
  • [6] A class of Bivariate SURE estimators in heteroscedastic hierarchical normal models
    S. K. Ghoreishi
    Journal of Statistical Theory and Applications, 2018, 17 (2): : 324 - 339
  • [7] A class of Bivariate SURE estimators in heteroscedastic hierarchical normal models
    Ghoreishi, S. K.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2018, 17 (02): : 324 - 339
  • [8] On general maximum likelihood empirical Bayes estimation of heteroscedastic IID normal means
    Jiang, Wenhua
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 2272 - 2297
  • [9] DOA ESTIMATION IN HETEROSCEDASTIC NOISE WITH SPARSE BAYESIAN LEARNING
    Gerstoft, Peter
    Nannuru, Santosh
    Mecklenbraeuker, Christoph F.
    Leus, Geert
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 3459 - 3463
  • [10] Group-Linear Empirical Bayes Estimates for a Heteroscedastic Normal Mean
    Weinstein, Asaf
    Ma, Zhuang
    Brown, Lawrence D.
    Zhang, Cun-Hui
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (522) : 698 - 710