Sakaguchi type function defined by (p, q)-derivative operator using Gegenbauer polynomials

被引:4
作者
Baskaran, S. [1 ]
Saravanan, G. [2 ]
Yalcin, Sibel [3 ]
Vanithakumari, B. [1 ]
机构
[1] Agurchand Manmull Jain Coll, Dept Math, Chennai 600114, Tamil Nadu, India
[2] Patrician Coll Arts & Sci, Dept Math, Chennai 600020, Tamil Nadu, India
[3] Bursa Uludag Univ, Dept Math, TR-16059 Bursa, Turkey
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2022年 / 13卷 / 02期
关键词
Analytic function; Bi-Univalent function; (p-q)- Derivative operator; Sakaguchi type function; Gegenbauer polynomials; BI-UNIVALENT FUNCTIONS; COEFFICIENT; SUBCLASS;
D O I
10.22075/ijnaa.2022.25973.3206
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An introduction of a new subclass of bi-univalent functions involving Sakaguchi type functions defined by (p, q)-Derivative operators using Gegenbauer polynomials have been obtained. Further, the bounds for initial coefficients vertical bar a(2)vertical bar, vertical bar a(3)vertical bar and Fekete Szego inequality have been estimated.
引用
收藏
页码:2197 / 2204
页数:8
相关论文
共 20 条
[1]  
Amourah A., 2021, Palestine Journal of Mathematics, V10, P625
[2]  
[Anonymous], 1965, Special Functions and Their Applications, DOI [DOI 10.1063/1.3047047, 10.1063/1.3047047]
[3]  
Baskaran S, 2022, Palestine Journal of Mathematics, V11, P41
[4]  
Brannan D. A., 1980, P NATO ADV STUDY I H
[5]  
Chakrabarti R., 1991, J PHYS MATH GEN, V24, P7
[6]  
Frasin B. A ..., 2010, Int. J. Nonlinear Sci., V10, P206
[8]  
NETANYAHU E, 1969, ARCH RATION MECH AN, V32, P100
[9]  
Owa S., 2005, RIMS KOKYUROKU, V1414, P76
[10]   On Sakaguchi type functions [J].
Owa, Shigeyoshi ;
Sekine, Tadayuki ;
Yamakawa, Rikuo .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) :356-361