REALIZING HIGHER CLUSTER CATEGORIES OF DYNKIN TYPE AS STABLE MODULE CATEGORIES

被引:2
作者
Holm, Thorsten [1 ]
Jorgensen, Peter [2 ]
机构
[1] Leibniz Univ Hannover, Fac Math & Phys, Inst Algebra Zahlentheorie & Diskrete Math, D-30167 Hannover, Germany
[2] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
EQUIVALENCE; ALGEBRAS; QUIVERS;
D O I
10.1093/qmath/has013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the stable module categories of certain self-injective algebras of finite representation type having tree class A(n), D-n, E-6, E-7 or E-8 are triangulated equivalent to u-cluster categories of the corresponding Dynkin type. The proof relies on the 'Morita' theorem for u-cluster categories by Keller and Reiten, along with the recent computation of Calabi-Yau dimensions of stable module categories by Dugas.
引用
收藏
页码:409 / 435
页数:27
相关论文
共 50 条
[41]   On the existence of cluster tilting objects in triangulated categories [J].
Bergh, Petter Andreas .
JOURNAL OF ALGEBRA, 2014, 417 :1-14
[42]   CLUSTER-TILTING SUBCATEGORIES IN EXTRIANGULATED CATEGORIES [J].
Zhou, Panyue ;
Zhu, Bin .
THEORY AND APPLICATIONS OF CATEGORIES, 2019, 34 :221-242
[43]   RELATIVE CLUSTER TILTING OBJECTS IN TRIANGULATED CATEGORIES [J].
Yang, Wuzhong ;
Zhu, Bin .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (01) :387-412
[44]   ON THE STABLE EQUIVALENCES BETWEEN FINITE TENSOR CATEGORIES [J].
Xu, Yuying ;
Liu, Gongxiang .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, :1867-1876
[45]   Finite Repetitive Generalized Cluster Complexes and d-Cluster Categories [J].
Zou, Teng ;
Zhu, Bin .
ALGEBRA COLLOQUIUM, 2013, 20 (01) :123-140
[46]   dZ-Cluster tilting subcategories of singularity categories [J].
Kvamme, Sondre .
MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (1-2) :803-825
[47]   Extensions in Jacobian algebras and cluster categories of marked surfaces [J].
Canakci, Ilke ;
Schroll, Sibylle .
ADVANCES IN MATHEMATICS, 2017, 313 :1-49
[48]   A Caldero-Chapoton formula for generalized cluster categories [J].
Dominguez, Salomon ;
Geiss, Christof .
JOURNAL OF ALGEBRA, 2014, 399 :887-893
[49]   Induction Functors for Hom-Doi-Hopf Module Categories [J].
Jia, Ling ;
Xu, Xiangyuan .
FILOMAT, 2022, 36 (10) :3241-3247
[50]   Classification of module categories for SO(3)2m [J].
Evans, David E. ;
Pugh, Mathew .
ADVANCES IN MATHEMATICS, 2021, 384