REALIZING HIGHER CLUSTER CATEGORIES OF DYNKIN TYPE AS STABLE MODULE CATEGORIES

被引:2
|
作者
Holm, Thorsten [1 ]
Jorgensen, Peter [2 ]
机构
[1] Leibniz Univ Hannover, Fac Math & Phys, Inst Algebra Zahlentheorie & Diskrete Math, D-30167 Hannover, Germany
[2] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2013年 / 64卷 / 02期
关键词
EQUIVALENCE; ALGEBRAS; QUIVERS;
D O I
10.1093/qmath/has013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the stable module categories of certain self-injective algebras of finite representation type having tree class A(n), D-n, E-6, E-7 or E-8 are triangulated equivalent to u-cluster categories of the corresponding Dynkin type. The proof relies on the 'Morita' theorem for u-cluster categories by Keller and Reiten, along with the recent computation of Calabi-Yau dimensions of stable module categories by Dugas.
引用
收藏
页码:409 / 435
页数:27
相关论文
共 50 条