Structural analysis of the Smeaheia fault block, a potential CO2 storage site, northern Horda Platform, North Sea

被引:30
作者
Mulrooney, Mark Joseph [1 ]
Osmond, Johnathon Lee [1 ]
Skurtveit, Elin [1 ,2 ]
Faleide, Jan Inge [1 ]
Braathen, Alvar [1 ]
机构
[1] Univ Oslo UiO, Dept Geosci, POB 1047, N-0316 Oslo, Norway
[2] Norwegian Geotech Inst NGI, POB 3930, N-0806 Oslo, Norway
关键词
Smeaheia; CCS; Horda platform; North sea rift; Vette fault zone; Oygarden fault complex; Troll field; 3D seismic; LISTRIC NORMAL FAULTS; ESPIRITO-SANTO BASIN; VIKING-GRABEN AREA; WESTERN NORWAY; SEDIMENTARY RESPONSE; RESERVOIR CHARACTERIZATION; SEQUENCE STRATIGRAPHY; CENOZOIC EVOLUTION; FRACTURE CORRIDORS; BASEMENT STRUCTURE;
D O I
10.1016/j.marpetgeo.2020.104598
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Smeaheia, a prominent fault block located on the Horda Platform, northern North Sea is identified as a potential subsurface CO2 storage site. We utilise the GN1101 3D seismic survey to generate a high-resolution subsurface geomodel to inform the structural style and evolution of the fault block, to investigate geological controls on proposed CO2 storage and provide a geometric framework as a basis for future analyses. Two basement-involved (first-order) north-south trending fault systems, the Vette Fault Zone (VFZ) and the Oygarden Fault Complex (OFC), bound the 15 km-wide fault block. The VFZ bifurcates down-section where it is hard-linked with two separate basement structures, a phenomenon we term as "dual rooted". Apart from activity during the PermoTriassic (Rift Phase 1) and the Late Jurassic-Early Cretaceous (Rift Phase 2), we present evidence that rifting in this part of the North Sea continued into the Late Cretaceous with minor reactivation in the Palaeocene-Eocene. Two segments of the VFZ interacted and linked at a relay ramp during Rift Phase 2. Second-order (thin-skinned) faults show basement affinity and developed during Rift Phase 2 in two distinct pulses. A population of polygonal faults intersects the overburden and developed during the Eocene to middle Miocene. We have revised the areal extent of two structural closures that define the Smeaheia fault block, Alpha (VFZ foot-wall) and Beta (OFC hanging wall) which consist of Upper Jurassic Viking Group target formations. Simplified cross-fault juxtaposition analysis of the VFZ and second-order intra-block faults are presented and inform pressure communication pathways between the Smeaheia and Tusse fault block, as well as reservoir integrity and compartmentalisation. The geomodel further identifies important geological controls on CO2 storage in the fault block including a thinning caprock above the Alpha structure, and identification of hard-linkage between deep tectonic faults and shallow polygonal faults.
引用
收藏
页数:33
相关论文
共 205 条