Amorphous oxide semiconductor memory using high-k charge trap layer

被引:0
作者
Rha, S. -H. [1 ,2 ,4 ]
Jung, J. S. [1 ,2 ]
Kim, J. H. [1 ,2 ]
Kim, U. K. [1 ,2 ]
Chung, Y. J. [1 ,2 ]
Jung, H. -S [1 ,2 ]
Lee, S. Y. [3 ]
Hwang, C. S. [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, WCU Hybrid Mat Program, Seoul 151744, South Korea
[2] Seoul Natl Univ, Inter Univ Semicond Res Ctr, Seoul 151744, South Korea
[3] Samsung Adv Inst Technol, Display Device & Proc Lab, Gyeonggido 446712, South Korea
[4] Samsung Elect Co Ltd, Semicond R& Ctr, Proc Dev Team, Gyeonggido 446712, South Korea
来源
THIN FILM TRANSISTORS 10 (TFT 10) | 2010年 / 33卷 / 05期
基金
新加坡国家研究基金会;
关键词
D O I
10.1149/1.3481260
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Amorphous oxide semiconductor memory devices with HfInZnOx as the channel layer and high-k dielectric stacks as the charge storage medium were fabricated. HfO2 and Al2O3 and HfAlOx films were examined as the charge trap layers. The drain current - gate voltage transfer curves of the fabricated charge trap memories shows a large hysteresis due to the electron trapping and de-trapping at the interfaces between the high-k charge storage layer and the SiO2. The device structure and operational scheme for the amorphous oxide semiconductor charge trap memories were suggested based on these properties.
引用
收藏
页码:375 / 380
页数:6
相关论文
共 50 条
[21]   In-depth investigation of Hf-based high-k dielectrics as storage layer of charge-trap NVMs [J].
Buckley, J. ;
Bocquet, M. ;
Molas, G. ;
Gely, M. ;
Brianceau, P. ;
Rochat, N. ;
Martinez, E. ;
Martin, F. ;
Grampeix, H. ;
Colonna, J. P. ;
Toffoli, A. ;
Vidal, V. ;
Leroux, C. ;
Ghibaudo, G. ;
Pananakakis, G. ;
Bongiorno, C. ;
Corso, D. ;
Lombardo, S. ;
DeSalvo, B. ;
Deleonibus, S. .
2006 INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2006, :930-+
[22]   High-K HfAlO charge trapping layer in SONOS-type nonvolatile memory device for high speed operation [J].
Tan, YN ;
Chim, WK ;
Choi, WK ;
Joo, MS ;
Ng, TH ;
Cho, BJ .
IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2004, TECHNICAL DIGEST, 2004, :889-892
[23]   Electrical characterization of MOS memory devices containing metallic nanoparticles and a high-k control oxide layer [J].
Sargentis, Ch. ;
Giannakopoulos, K. ;
Travlos, A. ;
Tsamakis, D. .
SURFACE SCIENCE, 2007, 601 (13) :2859-2863
[24]   Passivation of oxide traps in gallium arsenide (semiconductor) metal-oxide-semiconductor capacitor with high-k dielectric by using fluorine incorporation [J].
Liu, Lining ;
Choi, Hoi Wai ;
Lai, Pui To ;
Xu, Jingping .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2015, 33 (05)
[25]   Charge effect of an isolated Gold Nanoparticle embedded in High-k oxide [J].
Rezk, A. ;
Abbas, Y. ;
Saadat, I ;
Nayfeh, A. ;
Rezeq, M. .
20TH IEEE INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE NANO 2020), 2020, :24-28
[26]   Analysis of trap effect on reliability using the charge pumping technology in La-incorporated high-k dielectrics [J].
Kwon, Hyuk-Min ;
Choi, Won-Ho ;
Han, In-Shik ;
Park, Sang-Uk ;
Park, Byoung-Seok ;
Zhang, Ying-Ying ;
Kang, Chang-Yong ;
Lee, Byoung-Hun ;
Jammy, Raj ;
Lee, Hi-Deok .
MICROELECTRONIC ENGINEERING, 2011, 88 (12) :3415-3418
[27]   MIM capacitors using amorphous high-k PrTixOy dielectrics [J].
Wenger, C ;
Sorge, R ;
Schroeder, T ;
Mane, AU ;
Lippert, G ;
Lupina, G ;
Dabrowski, J ;
Zaumseil, P ;
Muessig, HJ .
MICROELECTRONIC ENGINEERING, 2005, 80 :313-316
[28]   A Charge-Trap Memory Device with a Composition-Modulated Zr-Silicate High-k Dielectric Multilayer Structure [J].
Lv Shi-Cheng ;
Ge Zhong-Yang ;
Zhou Yue ;
Xu Bo ;
Gao Li-Gang ;
Yin Jiang ;
Xia Yi-Dong ;
Liu Zhi-Guo .
CHINESE PHYSICS LETTERS, 2010, 27 (06)
[29]   A high-k Y2TiO5 charge trapping layer for high-density flash memory application [J].
Pan, Tung-Ming ;
Yeh, Wen-Wei ;
Chang, Wei-Tsung ;
Chen, Kai-Ming ;
Chen, Jing-Wei ;
Huang, Kuo-Chan .
2007 INTERNATIONAL SEMICONDUCTOR DEVICE RESEARCH SYMPOSIUM, VOLS 1 AND 2, 2007, :74-75
[30]   Charge trap flash memory using ferroelectric materials as a blocking layer [J].
Seo, Yujeong ;
An, Ho-Myoung ;
Song, Min Yeong ;
Kim, Tae Geun .
APPLIED PHYSICS LETTERS, 2012, 100 (17)