Unified perspective on structural heterogeneity of a LaCe-based metallic glass from versatile dynamic stimuli

被引:11
作者
Xu, Z. R. [1 ]
Yang, D. S. [1 ]
Qiao, J. C. [1 ]
Pelletier, J. M. [2 ]
Crespo, D. [3 ,4 ]
Pineda, E. [3 ,4 ]
Wang, Yun-Jiang [5 ,6 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Civil Engn & Architecture, Xian 710072, Peoples R China
[2] Univ Lyon, MATEIS, CNRS, UMR 5510,INSA Lyon, F-69621 Villeurbanne, France
[3] Univ Politecn Cataluna, Dept Fis, Barcelona Res Ctr Multiscale Sci & Technol, Barcelona 08019, Spain
[4] Univ Politecn Cataluna, Inst Tecn Energet, Barcelona 08019, Spain
[5] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[6] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 101408, Peoples R China
关键词
Metallic glass; Structural heterogeneity; Dynamic mechanical relaxation; Stress relaxation; Creep; HIGH-TEMPERATURE DEFORMATION; MECHANICAL-BEHAVIOR; ELASTIC PROPERTIES; INTERNAL-FRICTION; TRANSITION; FLOW; CRYSTALLIZATION; RELAXATION; CREEP;
D O I
10.1016/j.intermet.2020.106922
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dynamic mechanical relaxation, stress relaxation and creep were performed in a La56.16Ce14.0Ni19.8Al10 metallic glass with pronounced beta relaxation features. The evolution of the microstructural heterogeneity with tempera-ture is indirectly revealed via dynamic heterogeneity and analyzed in terms of several independent theoretical approaches. An apparent activation energy of beta relaxation is obtained by assuming the Arrhenius relationship, which is calibrated by either the activation enthalpy of stress relaxation or the activation energy of creep. It is found that similar deformation mechanisms accommodate the dynamics of the LaCe-based metallic glass under different types of external stimuli applied in mechanical experiments.
引用
收藏
页数:8
相关论文
共 50 条
[1]   PLASTIC-DEFORMATION IN METALLIC GLASSES [J].
ARGON, AS .
ACTA METALLURGICA, 1979, 27 (01) :47-58
[2]   Unveiling the predictive power of static structure in glassy systems [J].
Bapst, V ;
Keck, T. ;
Grabska-Barwinska, A. ;
Donner, C. ;
Cubuk, E. D. ;
Schoenholz, S. S. ;
Obika, A. ;
Nelson, A. W. R. ;
Back, T. ;
Hassabis, D. ;
Kohli, P. .
NATURE PHYSICS, 2020, 16 (04) :448-+
[3]   Free volume model: High-temperature deformation of a Zr-based bulk metallic glass [J].
Bletry, M ;
Guyot, P ;
Blandin, JJ ;
Soubeyroux, JL .
ACTA MATERIALIA, 2006, 54 (05) :1257-1263
[4]  
Caillard D., 2003, THERMALLY ACTIVATED, P15
[5]   Pronounced enhancement of glass-forming ability of Fe-Si-B-P bulk metallic glass in oxygen atmosphere [J].
Chang, Chuntao ;
Zhang, Jianhua ;
Shen, Baolong ;
Wang, Weihua ;
Inoue, Akihisa .
JOURNAL OF MATERIALS RESEARCH, 2014, 29 (10) :1217-1222
[6]   Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth [J].
Chen, L. ;
Cao, C. R. ;
Shi, J. A. ;
Lu, Z. ;
Sun, Y. T. ;
Luo, P. ;
Gu, L. ;
Bai, H. Y. ;
Pan, M. X. ;
Wang, W. H. .
PHYSICAL REVIEW LETTERS, 2017, 118 (01)
[7]   Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility [J].
Chen, Mingwei .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2008, 38 :445-469
[8]   Cooperative shear model for the rheology of glass-forming metallic liquids [J].
Demetriou, Marios D. ;
Harmon, John S. ;
Tao, Min ;
Duan, Gang ;
Samwer, Konrad ;
Johnson, William L. .
PHYSICAL REVIEW LETTERS, 2006, 97 (06)
[9]   Atomic level stresses [J].
Egami, T. .
PROGRESS IN MATERIALS SCIENCE, 2011, 56 (06) :637-653
[10]   Mechanical failure and glass transition in metallic glasses [J].
Egami, T. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 :S82-S86