Tuning the magnetostructural phase transition in FeRh nanocomposites

被引:11
作者
Barua, Radhika [1 ]
Jiang, Xiujuan [2 ]
Jimenez-Villacorta, Felix [1 ]
Shield, J. E. [2 ]
Heiman, D. [3 ]
Lewis, L. H. [1 ]
机构
[1] Northeastern Univ, Dept Chem Engn, Boston, MA 02115 USA
[2] Univ Nebraska, Dept Mech Engn, Lincoln, NE 68588 USA
[3] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
RH ALLOYS; MAGNETIC-PROPERTIES; IRON-RHODIUM; NANOPARTICLES; SYSTEMS; ORDER;
D O I
10.1063/1.4774282
中图分类号
O59 [应用物理学];
学科分类号
摘要
Effects of nanostructuring on the magnetostructural response of the near-equiatomic FeRh phase were investigated in nanocomposite materials synthesized by rapid solidification and subsequent annealing of an alloy of nominal atomic composition (FeRh)(5)Cu-95. Transmission electron microscopy studies confirm attainment of a phase-separated system of nanoscaled (similar to 10-15 nm diameter) precipitates, consistent with FeRh embedded in a Cu matrix. These nanoprecipitates are crystallographically aligned with the coarse-grained Cu matrix and possess an L1(0)-type (CuAu 1) structure, in contrast to the B2 (CsCl)-type structure of bulk FeRh. It is proposed that the face-centered cubic crystal structure of the Cu matrix serves as a template for the formation and stabilization of the L1(0) structure in the FeRh nanoprecipitates. Magnetic measurements highlight the existence of multiple magnetic phases in the material exhibiting spin-glass (T <= 15 K), ferromagnetic and paramagnetic (T > 20 K) behavior. A thermally hysteretic magnetic transition, remarkably similar to the magnetostructural transition of bulk CsCl-type FeRh reported at T-t = 370 K, is observed in the nanostructured material at 130 K. This result not only emphasizes the sensitivity of the magnetic and structural properties of FeRh to changes in microstructural scale, but also highlights the potential for tailoring magnetostructural transitions in functional materials systems via nanostructuring. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4774282]
引用
收藏
页数:6
相关论文
共 42 条
[1]   SPIN-GLASS OF LIQUID-QUENCHED CU-FE ALLOYS [J].
ADACHI, K ;
UCHIYAMA, T ;
MATSUI, M ;
DOI, M ;
MIYAZAKI, T .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1986, 54-7 (pt I) :115-116
[2]  
Algarabel P. A., 1995, APPL PHYS LETT, V66, P3061
[3]   Magnetocaloric effect and magnetization in a Ni-Mn-Ga Heusler alloy in the vicinity of magnetostructural transition [J].
Aliev, A ;
Batdalov, A ;
Bosko, S ;
Buchelnikov, V ;
Dikshtein, I ;
Khovailo, V ;
Koledov, V ;
Levitin, R ;
Shavrov, V ;
Takagi, T .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 :2040-2042
[4]   Anomalously high entropy change in FeRh alloy [J].
Annaorazov, MP ;
Nikitin, SA ;
Tyurin, AL ;
Asatryan, KA ;
Dovletov, AK .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (03) :1689-1695
[5]   Magnetic studies of solid solutions II The properties of quenched copper-iron alloys [J].
Bitter, F ;
Kautmann, AR ;
Starr, C ;
Pan, ST .
PHYSICAL REVIEW, 1941, 60 (02) :134-138
[6]  
BLOCH D, 1966, ANN PHYS-PARIS, V1, P93
[7]   Magnetic shape-memory alloys: phase transitions and functional properties [J].
Buchel'nikov, Vasilii D. ;
Vasiliev, Alexander N. ;
Koledov, V. V. ;
Taskaev, S. V. ;
Khovaylo, Vladimir V. ;
Shavrov, Vladimir G. .
PHYSICS-USPEKHI, 2006, 49 (08) :871-877
[8]   ATOMIC SHORT-RANGE ORDER IN CUFE ALLOYS [J].
CAMPBELL, SJ ;
HICKS, TJ .
JOURNAL OF PHYSICS F-METAL PHYSICS, 1975, 5 (01) :27-35
[9]  
Chakrabarti D.J., 1982, Bulletin of Alloy Phase Diagrams, V2, P460
[10]   METASTABLE FCC FE-RH ALLOYS AND RE-RH PHASE DIAGRAM [J].
CHAO, CC ;
DUWEZ, P ;
TSUEI, CC .
JOURNAL OF APPLIED PHYSICS, 1971, 42 (11) :4282-&