Quantum-limit Chern topological magnetism in TbMn6Sn6

被引:399
作者
Yin, Jia-Xin [1 ]
Ma, Wenlong [2 ]
Cochran, Tyler A. [1 ]
Xu, Xitong [2 ]
Zhang, Songtian S. [1 ]
Tien, Hung-Ju [3 ]
Shumiya, Nana [1 ]
Cheng, Guangming [4 ]
Jiang, Kun [5 ]
Lian, Biao [6 ]
Song, Zhida [7 ]
Chang, Guoqing [1 ]
Belopolski, Ilya [1 ]
Multer, Daniel [1 ]
Litskevich, Maksim [1 ]
Cheng, Zi-Jia [1 ]
Yang, Xian P. [1 ]
Swidler, Bianca [1 ]
Zhou, Huibin [2 ]
Lin, Hsin [8 ]
Neupert, Titus [9 ]
Wang, Ziqiang [5 ]
Yao, Nan [4 ]
Chang, Tay-Rong [3 ,10 ,11 ]
Jia, Shuang [2 ,12 ,13 ]
Zahid Hasan, M. [1 ,14 ]
机构
[1] Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Adv Spect B7, Princeton, NJ 08544 USA
[2] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing, Peoples R China
[3] Natl Cheng Kung Univ, Dept Phys, Tainan, Taiwan
[4] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton, NJ 08544 USA
[5] Boston Coll, Dept Phys, Chestnut Hill, MA 02167 USA
[6] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[7] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[8] Acad Sinica, Inst Phys, Taipei, Taiwan
[9] Univ Zurich, Dept Phys, Zurich, Switzerland
[10] Ctr Quantum Frontiers Res & Technol QFort, Tainan, Taiwan
[11] Natl Ctr Theoret Sci, Div Phys, Hsinchu, Taiwan
[12] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing, Peoples R China
[13] Beijing Acad Quantum Informat Sci, Beijing, Peoples R China
[14] Lawrence Berkeley Natl Lab, Berkeley, CA USA
基金
中国国家自然科学基金; 美国国家科学基金会; 欧盟地平线“2020”;
关键词
RMN6SN6; R; HALL; ER;
D O I
10.1038/s41586-020-2482-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Scanning tunnelling microscopy is used to reveal a new topological kagome magnet with an intrinsic Chern quantum phase, which shows a distinct Landau fan structure with a large Chern gap. The quantum-level interplay between geometry, topology and correlation is at the forefront of fundamental physics(1-15). Kagome magnets are predicted to support intrinsic Chern quantum phases owing to their unusual lattice geometry and breaking of time-reversal symmetry(14,15). However, quantum materials hosting ideal spin-orbit-coupled kagome lattices with strong out-of-plane magnetization are lacking(16-21). Here, using scanning tunnelling microscopy, we identify a new topological kagome magnet, TbMn6Sn6, that is close to satisfying these criteria. We visualize its effectively defect-free, purely manganese-based ferromagnetic kagome lattice with atomic resolution. Remarkably, its electronic state shows distinct Landau quantization on application of a magnetic field, and the quantized Landau fan structure features spin-polarized Dirac dispersion with a large Chern gap. We further demonstrate the bulk-boundary correspondence between the Chern gap and the topological edge state, as well as the Berry curvature field correspondence of Chern gapped Dirac fermions. Our results point to the realization of a quantum-limit Chern phase in TbMn6Sn6, and may enable the observation of topological quantum phenomena in the RMn6Sn6(where R is a rare earth element) family with a variety of magnetic structures. Our visualization of the magnetic bulk-boundary-Berry correspondence covering real space and momentum space demonstrates a proof-of-principle method for revealing topological magnets.
引用
收藏
页码:533 / +
页数:17
相关论文
共 50 条
[31]  
Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865
[32]   Hybridization gap and Fano resonance in SmB6 [J].
Roessler, Sahana ;
Jang, Tae-Hwan ;
Kim, Dae-Jeong ;
Tjeng, L. H. ;
Fisk, Zachary ;
Steglich, Frank ;
Wirth, Steffen .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (13) :4798-4802
[33]   Topological order, emergent gauge fields, and Fermi surface reconstruction [J].
Sachdev, Subir .
REPORTS ON PROGRESS IN PHYSICS, 2019, 82 (01)
[34]   Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene [J].
Sharpe, Aaron L. ;
Fox, Eli J. ;
Barnard, Arthur W. ;
Finney, Joe ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kastner, M. A. ;
Goldhaber-Gordon, David .
SCIENCE, 2019, 365 (6453) :605-608
[35]   Anomalous Hall effect in a two-dimensional Dirac band: The link between the Kubo-Streda formula and the semiclassical Boltzmann equation approach [J].
Sinitsyn, N. A. ;
MacDonald, A. H. ;
Jungwirth, T. ;
Dugaev, V. K. ;
Sinova, Jairo .
PHYSICAL REVIEW B, 2007, 75 (04)
[36]   High-Temperature Fractional Quantum Hall States [J].
Tang, Evelyn ;
Mei, Jia-Wei ;
Wen, Xiao-Gang .
PHYSICAL REVIEW LETTERS, 2011, 106 (23)
[37]  
Tang SJ, 2017, NAT PHYS, V13, P683, DOI [10.1038/nphys4174, 10.1038/NPHYS4174]
[38]   QUANTIZED HALL CONDUCTANCE IN A TWO-DIMENSIONAL PERIODIC POTENTIAL [J].
THOULESS, DJ ;
KOHMOTO, M ;
NIGHTINGALE, MP ;
DENNIJS, M .
PHYSICAL REVIEW LETTERS, 1982, 49 (06) :405-408
[39]   Proper Scaling of the Anomalous Hall Effect [J].
Tian, Yuan ;
Ye, Li ;
Jin, Xiaofeng .
PHYSICAL REVIEW LETTERS, 2009, 103 (08)
[40]   Formation of Pt-induced Ge atomic nanowires on Pt/Ge(001): A density functional theory study [J].
Vanpoucke, Danny E. P. ;
Brocks, Geert .
PHYSICAL REVIEW B, 2008, 77 (24)