OPTIMALITY CONDITIONS AND DUALITY IN NONDIFFERENTIABLE INTERVAL-VALUED PROGRAMMING

被引:32
作者
Sun, Yuhua [1 ,2 ]
Wang, Laisheng [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Interval-valued programming; necessary optimality conditions; sufficient optimality conditions; duality; interval mathematics; OPTIMIZATION PROBLEMS; CONSTRAINTS;
D O I
10.3934/jimo.2013.9.131
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we define the concepts of LU optimal solution to interval-valued programming problem. By considering the concepts of L U optimal solution, the Fritz John type and Kuhn-Tucker type necessary and sufficient optimality conditions for nondifferentiable interval programming are derived. Further, we establish the dual problem and prove the duality theorems.
引用
收藏
页码:131 / 142
页数:12
相关论文
共 25 条
[1]  
[Anonymous], 2005, Fuzzy Optimization and Decision Making, DOI DOI 10.1007/S10700-004-5568-Z
[2]  
[Anonymous], 2013, Stochastic Programming
[3]  
Bazaraa M.S., 1990, LINEAR PROGRAMMING N, DOI DOI 10.1002/0471787779
[4]   Duality gaps in nonconvex stochastic optimization [J].
Dentcheva, D ;
Römisch, W .
MATHEMATICAL PROGRAMMING, 2004, 101 (03) :515-535
[5]   Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints [J].
Dentcheva, D ;
Ruszczynski, A .
MATHEMATICAL PROGRAMMING, 2004, 99 (02) :329-350
[6]  
Gong ZT, 2009, ADV SOFT COMP, V54, P7
[7]   Stochastic programming duality:: L∞ multipliers for unbounded constraints with an application to mathematical finance [J].
Korf, LA .
MATHEMATICAL PROGRAMMING, 2004, 99 (02) :241-259
[8]   MULTI-OBJECTIVE AGGREGATE PRODUCTION PLANNING DECISIONS USING TWO-PHASE FUZZY GOAL PROGRAMMING METHOD [J].
Liang, Tien-Fu ;
Cheng, Hung-Wen .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2011, 7 (02) :365-383
[9]   Duality in fuzzy number linear programming by use of a certain linear ranking function [J].
Mahdavi-Amiri, N. ;
Nasseri, S. H. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 180 (01) :206-216
[10]  
Moore R.E., 1979, METHOD APPL INTERVAL, P74