Quantum groups via Hall algebras of complexes

被引:81
作者
Bridgeland, Tom [1 ]
机构
[1] Univ Oxford All Souls Coll, Oxford OX1 4AL, England
关键词
CATEGORIES;
D O I
10.4007/annals.2013.177.2.9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe quantum enveloping algebras of symmetric Kac-Moody Lie algebras via a finite field Hall algebra construction involving Z(2)-graded complexes of quiver representations.
引用
收藏
页码:739 / 759
页数:21
相关论文
共 14 条
[1]   ON THE HALL ALGEBRA OF AN ELLIPTIC CURVE, I [J].
Burban, Igor ;
Schiffmann, Olivier .
DUKE MATHEMATICAL JOURNAL, 2012, 161 (07) :1171-1231
[2]   TWO DESCRIPTIONS OF THE QUANTUM AFFINE ALGEBRA Uυ((sl)over-cap2) VIA HALL ALGEBRA APPROACH [J].
Burban, Igor ;
Schiffmann, Olivier .
GLASGOW MATHEMATICAL JOURNAL, 2012, 54 (02) :283-307
[3]   Double Hall algebras and derived equivalences [J].
Cramer, Tim .
ADVANCES IN MATHEMATICS, 2010, 224 (03) :1097-1120
[4]   HALL ALGEBRAS, HEREDITARY ALGEBRAS AND QUANTUM GROUPS [J].
GREEN, JA .
INVENTIONES MATHEMATICAE, 1995, 120 (02) :361-377
[5]   Heisenberg doubles and derived categories [J].
Kapranov, M .
JOURNAL OF ALGEBRA, 1998, 202 (02) :712-744
[6]  
Lusztig G., 1993, Introduction to quantum groups, V110
[7]   Root categories and simple Lie algebras [J].
Peng, LG ;
Xiao, J .
JOURNAL OF ALGEBRA, 1997, 198 (01) :19-56
[8]   Triangulated categories and Kac-Moody algebras [J].
Peng, LG ;
Xiao, J .
INVENTIONES MATHEMATICAE, 2000, 140 (03) :563-603
[9]   HALL ALGEBRAS AND QUANTUM GROUPS [J].
RINGEL, CM .
INVENTIONES MATHEMATICAE, 1990, 101 (03) :583-592
[10]  
SCHIFFMANN O., MATH0611617 ARXIV