Deep-Learning Approach for Fusarium Head Blight Detection in Wheat Seeds Using Low-Cost Imaging Technology

被引:10
作者
Bernardes, Rodrigo Cupertino [1 ]
De Medeiros, Andre [2 ]
da Silva, Laercio [2 ]
Cantoni, Leo [2 ]
Martins, Gustavo Ferreira [3 ]
Mastrangelo, Thiago [4 ]
Novikov, Arthur [5 ]
Mastrangelo, Clissia Barboza [4 ]
机构
[1] Univ Fed Vicosa UFV, Dept Entomol, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Vicosa UFV, Dept Agron, BR-36570900 Vicosa, MG, Brazil
[3] Univ Fed Vicosa UFV, Dept Gen Biol, BR-36570900 Vicosa, MG, Brazil
[4] Ctr Nucl Energy Agr CENA USP, Lab Radiobiol & Environm, BR-13416000 Piracicaba, SP, Brazil
[5] Voronezh State Univ Forestry & Technol, Timber Ind Fac, Voronezh 394087, Russia
来源
AGRICULTURE-BASEL | 2022年 / 12卷 / 11期
基金
巴西圣保罗研究基金会;
关键词
seed quality; convolutional neural networks; Triticum aestivum; Fusarium graminearum; RGB images; TBIO Toruk cultivar; NEURAL-NETWORKS; QUALITY; KERNELS;
D O I
10.3390/agriculture12111801
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Modern techniques that enable high-precision and rapid identification/elimination of wheat seeds infected by Fusarium head blight (FHB) can help to prevent human and animal health risks while improving agricultural sustainability. Robust pattern-recognition methods, such as deep learning, can achieve higher precision in detecting infected seeds using more accessible solutions, such as ordinary RGB cameras. This study used different deep-learning approaches based on RGB images, combining hyperparameter optimization, and fine-tuning strategies with different pretrained convolutional neural networks (convnets) to discriminate wheat seeds of the TBIO Toruk cultivar infected by FHB. The models achieved an accuracy of 97% using a low-complexity design architecture with hyperparameter optimization and 99% accuracy in detecting FHB in seeds. These findings suggest the potential of low-cost imaging technology and deep-learning models for the accurate classification of wheat seeds infected by FHB. However, FHB symptoms are genotype-dependent, and therefore the accuracy of the detection method may vary depending on phenotypic variations among wheat cultivars.
引用
收藏
页数:14
相关论文
共 51 条
[1]   A Deep Learning-Based Model for Date Fruit Classification [J].
Albarrak, Khalied ;
Gulzar, Yonis ;
Hamid, Yasir ;
Mehmood, Abid ;
Soomro, Arjumand Bano .
SUSTAINABILITY, 2022, 14 (10)
[2]   A State-of-the-Art Survey on Deep Learning Theory and Architectures [J].
Alom, Md Zahangir ;
Taha, Tarek M. ;
Yakopcic, Chris ;
Westberg, Stefan ;
Sidike, Paheding ;
Nasrin, Mst Shamima ;
Hasan, Mahmudul ;
Van Essen, Brian C. ;
Awwal, Abdul A. S. ;
Asari, Vijayan K. .
ELECTRONICS, 2019, 8 (03)
[3]   Detecting Fusarium head blight in wheat kernels using hyperspectral imaging [J].
Barbedo, Jayme G. A. ;
Tibola, Casiane S. ;
Fernandes, Jose M. C. .
BIOSYSTEMS ENGINEERING, 2015, 131 :65-76
[4]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[5]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[6]  
Clevert D. A., 2016, ARXIV
[7]   Estimating percentages of fusarium-damaged kernels in hard wheat by near-infrared hyperspectral imaging [J].
Delwiche, S. R. ;
Torres Rodriguez, I. ;
Rausch, S. R. ;
Graybosch, R. A. .
JOURNAL OF CEREAL SCIENCE, 2019, 87 :18-24
[8]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[9]   Assessment of CNN-Based Methods for Individual Tree Detection on Images Captured by RGB Cameras Attached to UAVs [J].
dos Santos, Anderson Aparecido ;
Marcato Junior, Jose ;
Araujo, Marcio Santos ;
Di Martini, David Robledo ;
Tetila, Everton Castelao ;
Siqueira, Henrique Lopes ;
Aoki, Camila ;
Eltner, Anette ;
Matsubara, Edson Takashi ;
Pistori, Hemerson ;
Feitosa, Raul Queiroz ;
Liesenberg, Veraldo ;
Goncalves, Wesley Nunes .
SENSORS, 2019, 19 (16)
[10]   A unified heuristic approach to simultaneously detect fusarium and ergot damage in wheat [J].
Erkinbaev, Chyngyz ;
Nadimi, Mohammad ;
Paliwal, Jitendra .
MEASUREMENT: FOOD, 2022, 7