On the performance of switching BFGS/SR1 algorithms for unconstrained optimization

被引:1
作者
Al-Baali, M
Fuduli, A
Musmanno, R [1 ]
机构
[1] Univ Calabria, Dipartimento Elettr Informat & Sistemist, I-87036 Arcavacata Di Rende, CS, Italy
[2] Sultan Qaboos Univ, Dept Math & Stat, Muscat, Oman
[3] Univ Lecce, Dipartimento Ingn Innovaz, I-73100 Lecce, LE, Italy
关键词
unconstrained optimization; BFGS and SR1 updating methods; switching and extra updating techniques;
D O I
10.1080/10556780310001625019
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper studies some possible combinations of the best features of the quasi-Newton symmetric rank-one (SR1), BFGS and extra updating BFGS algorithms for solving nonlinear unconstrained optimization problems. These combinations depend on switching between the BFGS and SR1 updates so that certain desirable properties are imposed. The presented numerical results show that the proposed switching algorithm outperforms the robust BFGS method.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 16 条