Synthesis of three-dimensionally porous MnO thin films for lithium-ion batteries by improved Electrostatic Spray Deposition technique

被引:45
作者
Ma, Xiao-Hang [1 ,2 ]
Wan, Qing-Yun [1 ,2 ]
Huang, Xiao [1 ,2 ]
Ding, Chu-Xiong [1 ,2 ]
Jin, Yi [3 ]
Guan, Yi-Biao [3 ]
Chen, Chun-Hua [1 ,2 ]
机构
[1] Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei 230026, Anhui, Peoples R China
[3] China Elect Power Res Inst, Dept Elect Engn & New Mat, Beijing 100192, Peoples R China
基金
美国国家科学基金会;
关键词
Manganese oxide; thin film; electrospray; electrochemical property; anode; lithium-ion battery; FACILE SYNTHESIS; ANODE MATERIALS; LI; PERFORMANCE; STORAGE; NANOTUBES;
D O I
10.1016/j.electacta.2013.12.004
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The three-dimensionally porous MnO thin-film electrodes supported on nickel foam and stainless steel substrates were prepared by the improved electrostatic spray deposition (ESD) technique. X-ray diffraction, scanning electron microscopy, and galvanostatic cell cycing are employed to characterize the structures and electrochemical performance of the MnO thin-film electrodes. The results show that these as-prepared MnO thin-film electrodes have a special three dimensional porous network structure and also have stable cycling performance with a reversible capacity of over 850 mAh g(-1) after 50 cycles at a current density of 80 mA g(-1). The MnO thin-film deposited on the nickel foam shows the highest initial columbic efficiency (83.9%), the lowest initial capacity loss (14.2%), and the best rate performance with a high capacity of 498.4 mAh g(-1) at a current density of 1200 mA g(-1). The experimental results suggest that such the MnO thin-film with a special structure is a promising anode material for lithium-ion batteries. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:15 / 20
页数:6
相关论文
共 24 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Coaxial MnO/C nanotubes as anodes for lithium-ion batteries [J].
Ding, Y. L. ;
Wu, C. Y. ;
Yu, H. M. ;
Xie, J. ;
Cao, G. S. ;
Zhu, T. J. ;
Zhao, X. B. ;
Zeng, Y. W. .
ELECTROCHIMICA ACTA, 2011, 56 (16) :5844-5848
[3]   An update on the reactivity of nanoparticles Co-based compounds towards Li [J].
Grugeon, S ;
Laruelle, S ;
Dupont, L ;
Tarascon, JM .
SOLID STATE SCIENCES, 2003, 5 (06) :895-904
[4]   On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential [J].
Laruelle, S ;
Grugeon, S ;
Poizot, P ;
Dollé, M ;
Dupont, L ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (05) :A627-A634
[5]   A facile route to synthesize nano-MnO/C composites and their application in lithium ion batteries [J].
Li, Si-Rong ;
Sun, Yi ;
Ge, Si-Yuan ;
Qiao, Yu ;
Chen, Yi-Meng ;
Liebervvirth, Ingo ;
Yu, Yan ;
Chen, Chun-Hua .
CHEMICAL ENGINEERING JOURNAL, 2012, 192 :226-231
[6]   Nanoporous tree-like SiO2 films fabricated by sol-gel assisted electrostatic spray deposition [J].
Li, Xifei ;
Dhanabalan, Abirami ;
Meng, Xiangbo ;
Gu, Lin ;
Sun, Xueliang ;
Wang, Chunlei .
MICROPOROUS AND MESOPOROUS MATERIALS, 2012, 151 :488-494
[7]   Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes [J].
Li, Xiuwan ;
Li, Dan ;
Qiao, Li ;
Wang, Xinghui ;
Sun, Xiaolei ;
Wang, Peng ;
He, Deyan .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (18) :9189-9194
[8]   MnO/C Nanocomposites as High Capacity Anode Materials for Li-Ion Batteries [J].
Liu, Jia ;
Pan, Qinmin .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (10) :A139-A142
[9]   Facile synthesis of MnO/C anode materials for lithium-ion batteries [J].
Liu, Yamin ;
Zhao, Xiuyun ;
Li, Fan ;
Xia, Dingguo .
ELECTROCHIMICA ACTA, 2011, 56 (18) :6448-6452
[10]   MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance [J].
Mai, Y. J. ;
Zhang, D. ;
Qiao, Y. Q. ;
Gu, C. D. ;
Wang, X. L. ;
Tu, J. P. .
JOURNAL OF POWER SOURCES, 2012, 216 :201-207