Chaos synchronization between linearly coupled chaotic systems

被引:271
作者
Lü, JH [1 ]
Zhou, TS
Zhang, SC
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100080, Peoples R China
[2] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100080, Peoples R China
关键词
D O I
10.1016/S0960-0779(02)00005-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the chaos synchronization between two linearly coupled chaotic systems. Some sufficient conditions of global asymptotic synchronization are attained from rigorously mathematical theory. Also, a new method for analyzing the stability of synchronization solution is presented. Using this method. some sufficient conditions of linear stability of the synchronization chaotic solution are gained. The influence of coupling coefficients on chaos synchronization is further studied for three typical chaotic systems: Lorenz system. Chen system, and newly found Lid system. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:529 / 541
页数:13
相关论文
共 25 条
[1]   Synchronization of Rossler and Chen chaotic dynamical systems using active control [J].
Agiza, HN ;
Yassen, MT .
PHYSICS LETTERS A, 2001, 278 (04) :191-197
[2]  
[Anonymous], CHAOS CONTROL
[3]   A unifying definition of synchronization for dynamical systems [J].
Brown, R ;
Kocarev, L .
CHAOS, 2000, 10 (02) :344-349
[4]  
Chen G., 1998, CHAOS ORDER METHODOL
[5]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[6]   Asymptotic synchronization in lattices of coupled nonidentical Lorenz equation [J].
Chiu, CH ;
Lin, WW ;
Peng, CC .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (12) :2717-2728
[7]  
Chua L. O., 1993, Journal of Circuits, Systems and Computers, V3, P93, DOI 10.1142/S0218126693000071
[8]  
DIALECII JL, 1974, TRANSLATION MATH MON, V43
[9]  
GAO B, 2002, IN PRESS CONTROL THE
[10]   LOCALIZING THE ATTRACTOR OF THE LORENZ-SYSTEM [J].
LEONOV, GA ;
BUNIN, AI ;
KOKSCH, N .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (12) :649-656