Remarks on differential Harnack inequalities

被引:29
作者
Qian, Bin [1 ]
机构
[1] Changshu Inst Technol, Dept Math, Changshu 215500, Jiangsu, Peoples R China
关键词
Heat equations; Differential Harnack inequalities; Gradient estimates; Entropy; EQUATIONS;
D O I
10.1016/j.jmaa.2013.07.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a generalization of (global and local) differential Harnack inequalities for heat equations obtained by Li and Xu [J.F. Li, X.J. Xu, Differential Harnack inequalities on Riemannian manifolds I: linear heat equation, Adv: Math. 226 (5) (2011) 4456-4491] and Baudoin and Garofalo [F. Baudoin, N. Garofalo, Perelman's entropy and doubling property on Riemannian manifolds, J. Geom. Anal. 21 (2011) 1119-1131]. From this we can derive new Harnack inequalities and new lower bounds for the associated heat kernel. Also we provide some new entropy formulas with monotonicity. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:556 / 566
页数:11
相关论文
共 21 条
[1]  
[Anonymous], 1994, C P LECT NOTES GEOME
[2]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[3]  
Bakry D, 1999, REV MAT IBEROAM, V15, P143
[4]  
Bakry D, 1997, NEW TRENDS IN STOCHASTIC ANALYSIS, P43
[5]  
Bakry D, 2009, POTENTIAL THEORY AND STOCHASTICS IN ALBAC: AUREL CORNEA MEMORIAL VOLUME, CONFERENCE PROCEEDINGS, P1
[6]  
BAUDOIN F, 2010, PREPRINT
[7]   A Note on Lower Bounds Estimates for the Neumann Eigenvalues of Manifolds with Positive Ricci Curvature [J].
Baudoin, Fabrice ;
Vatamanelu, Alice .
POTENTIAL ANALYSIS, 2012, 37 (01) :91-101
[8]   Perelman's Entropy and Doubling Property on Riemannian Manifolds [J].
Baudoin, Fabrice ;
Garofalo, Nicola .
JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (04) :1119-1131
[9]  
Hamilton R. S., 1993, COMMUN ANAL GEOM, V1, P113
[10]   Gradient Estimates for the Porous Medium Equations on Riemannian Manifolds [J].
Huang, Guangyue ;
Huang, Zhijie ;
Li, Haizhong .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (04) :1851-1875