EVOLUTIONARY REVERSALS OF ANTIBIOTIC RESISTANCE IN EXPERIMENTAL POPULATIONS OF PSEUDOMONAS AERUGINOSA

被引:25
作者
Gifford, Danna R. [1 ]
MacLean, R. Craig [1 ]
机构
[1] Univ Oxford, Dept Zool, Oxford OX1 2JD, England
基金
加拿大自然科学与工程研究理事会;
关键词
Compensatory evolution; evolvability; genetic drift; probability of fixation; rifampicin; BENEFICIAL MUTATIONS; ESCHERICHIA-COLI; BIOLOGICAL COST; COMPENSATORY EVOLUTION; EVOLVABILITY; SELECTION; PERSISTENCE; ADAPTATION; MECHANISMS; BACTERIA;
D O I
10.1111/evo.12158
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Antibiotic resistance mutations are accompanied by a fitness cost, and two mechanisms allow bacteria to adapt to this cost once antibiotic use is halted. First, it is possible for resistance to revert; second, it is possible for bacteria to adapt to the cost of resistance by compensatory mutations. Unfortunately, reversion to antibiotic sensitivity is rare, but the underlying factors that prevent reversion remain obscure. Here, we directly study the evolutionary dynamics of reversion by experimentally mimicking reversion mutationssensitivesin populations of rifampicin-resistant Pseudomonas aeruginosa. We show that, in our populations, most sensitives are lost due to genetic drift when they are rare. However, clonal interference from lineages carrying compensatory mutations causes a dramatic increase in the time to fixation of sensitives that escape genetic drift, and mutations surpassing the sensitives' fitness are capable of driving transiently common sensitive lineages to extinction. Crucially, we show that the constraints on reversion arising from clonal interference are determined by the potential for compensatory adaptation of the resistant population. Although the cost of resistance provides the incentive for reversion, our study demonstrates that both the cost of resistance and the intrinsic evolvability of resistant populations interact to determine the rate and likelihood of reversion.
引用
收藏
页码:2973 / 2981
页数:9
相关论文
共 33 条
[1]   The biological cost of mutational antibiotic resistance: any practical conclusions? [J].
Andersson, Dan I. .
CURRENT OPINION IN MICROBIOLOGY, 2006, 9 (05) :461-465
[2]   Persistence of antibiotic resistance in bacterial populations [J].
Andersson, Dan I. ;
Hughes, Diarmaid .
FEMS MICROBIOLOGY REVIEWS, 2011, 35 (05) :901-911
[3]   Antibiotic resistance and its cost: is it possible to reverse resistance? [J].
Andersson, Dan I. ;
Hughes, Diarmaid .
NATURE REVIEWS MICROBIOLOGY, 2010, 8 (04) :260-271
[4]   The biological cost of antibiotic resistance [J].
Andersson, DI ;
Levin, BR .
CURRENT OPINION IN MICROBIOLOGY, 1999, 2 (05) :489-493
[5]   Persistence of antibiotic resistant bacteria [J].
Andersson, DI .
CURRENT OPINION IN MICROBIOLOGY, 2003, 6 (05) :452-456
[6]  
[Anonymous], 2011, R: A Language and Environment for Statistical Computing
[7]   Clonal spread of resistant pneumococci despite diminished antimicrobial use [J].
Arason, VA ;
Gunnlaugsson, A ;
Sigurdsson, JA ;
Erlendsdottir, H ;
Gudmundsson, S ;
Kristinsson, KG .
MICROBIAL DRUG RESISTANCE-MECHANISMS EPIDEMIOLOGY AND DISEASE, 2002, 8 (03) :187-192
[8]  
Bell G, 2008, SELECTION: THE MECHANISM OF EVOLUTION, 2ND EDITION, P1
[9]   Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance [J].
Björkman, J ;
Nagaev, I ;
Berg, OG ;
Hughes, D ;
Andersson, DI .
SCIENCE, 2000, 287 (5457) :1479-1482
[10]   Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes [J].
Comas, Inaki ;
Borrell, Sonia ;
Roetzer, Andreas ;
Rose, Graham ;
Malla, Bijaya ;
Kato-Maeda, Midori ;
Galagan, James ;
Niemann, Stefan ;
Gagneux, Sebastien .
NATURE GENETICS, 2012, 44 (01) :106-U147