Structure and classification of superconformal nets
被引:35
作者:
论文数: 引用数:
h-index:
机构:
Carpi, Sebastiano
[1
]
Kawahigashi, Yasuyuki
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Dept Math Sci, Tokyo 1538914, JapanUniv Chieti Pescara G dAnnunzio, Dipartimento Sci, I-65127 Pescara, Italy
Kawahigashi, Yasuyuki
[2
]
Longo, Roberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, ItalyUniv Chieti Pescara G dAnnunzio, Dipartimento Sci, I-65127 Pescara, Italy
Longo, Roberto
[3
]
机构:
[1] Univ Chieti Pescara G dAnnunzio, Dipartimento Sci, I-65127 Pescara, Italy
[2] Univ Tokyo, Dept Math Sci, Tokyo 1538914, Japan
[3] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
来源:
ANNALES HENRI POINCARE
|
2008年
/
9卷
/
06期
关键词:
D O I:
10.1007/s00023-008-0381-9
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
We study the general structure of Fermi conformal nets of von Neumann algebras on S-1 and consider a class of topological representations, the general representations, that we characterize as Neveu-Schwarz or Ramond representations, in particular a Jones index can be associated with each of them. We then consider a supersymmetric general representation associated with a Fermi modular net and give a formula involving the Fredholm index of the supercharge operator and the Jones index. We then consider the net associated with the super-Virasoro algebra and discuss its structure. If the central charge c belongs to the discrete series, this net is modular by the work of F. Xu and we get an example where our setting is verified by taking the Ramond irreducible representation with lowest weight c/24. We classify all the irreducible Fermi extensions of any super-Virasoro net in the discrete series, thus providing a classification of all superconformal nets with central charge less than 3/2.