Silicon nanoparticles synthesized in SiO2 pockets by stencil-masked low energy ion implantation and thermal annealing

被引:4
作者
Grisolia, J. [1 ,2 ]
Dumas, C. [1 ,2 ,3 ,4 ]
Ben Assayag, G. [3 ,4 ]
Bonafos, C. [3 ,4 ]
Schamm, S. [3 ,4 ]
Arbouet, A. [3 ,4 ]
Paillard, V. [3 ,4 ]
van den Boogaart, M. A. F. [5 ]
Brugger, J. [5 ]
Normand, P. [6 ]
机构
[1] Univ Toulouse, INSA, UPS, LPCNO, F-31077 Toulouse, France
[2] CNRS, LPCNO, F-31077 Toulouse, France
[3] Univ Toulouse, NMat Grp, F-31055 Toulouse, France
[4] CNRS, CEMES, F-31055 Toulouse, France
[5] Ecole Polytech Fed Lausanne, Lab Microsyst, CH-1015 Lausanne, Switzerland
[6] NCSR Demokritos, Inst Microelect, Aghia Praskevi 15310, Greece
关键词
Silicon nanocrystal; Ion implantation; SEM; EFTEM; PL; MOS; Coulomb blockade;
D O I
10.1016/j.spmi.2007.12.013
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We propose an original approach called a "stencil-masked ion implantation process" for performing a spatially localized synthesis of a limited number of Si nanocrystals within a thin SiO2 layer. In this process, the SiO2 layer is irradiated with 1 keV silicon ions through a stencil mask containing apertures (from 100 nm to 2 mu m), and subsequently thermally annealed to create Si nanocrystals. Scanning electron microscopy images show that the implanted areas mimic the mask geometry. Energy-filtered transmission electron microscopy and photoluminescence spectroscopy studies confirm that only the implanted areas are Si nanocrystal rich and fight emitting. The smaller nanocrystal size detected near the edges of the implanted areas is attributed to dose reduction effects. This feature leads to a blueshift of the PL energy. Electrical properties of the structures produced are investigated using Al gate MOS capacitors. Room temperature I-V and I-t characteristics exhibit discrete current peaks that are associated with single-electron charging of the nanocrystals and electrostatic interaction of the trapped charges with the tunnelling current. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:395 / 401
页数:7
相关论文
共 20 条
[1]   Single-electron charging effect in individual Si nanocrystals [J].
Baron, T ;
Gentile, P ;
Magnea, N ;
Mur, P .
APPLIED PHYSICS LETTERS, 2001, 79 (08) :1175-1177
[2]  
Ben Assayag G., 2003, APPL PHYS LETT, V82, P200
[3]   Manipulation of two-dimensional arrays of Si nanocrystals embedded in thin SiO2 layers by low energy ion implantation [J].
Bonafos, C ;
Carrada, M ;
Cherkashin, N ;
Coffin, H ;
Chassaing, D ;
Assayag, GB ;
Claverie, A ;
Müller, T ;
Heinig, KH ;
Perego, M ;
Fanciulli, M ;
Dimitrakis, P ;
Normand, P .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (10) :5696-5702
[4]   Photoluminescence of Si nanocrystal memory devices obtained by ion beam synthesis [J].
Carrada, M ;
Wellner, A ;
Paillard, V ;
Bonafos, C ;
Coffin, H ;
Claverie, A .
APPLIED PHYSICS LETTERS, 2005, 87 (25) :1-3
[5]   Occurrence of giant current fluctuations in 2D tunnel junction arrays [J].
Cordan, AS .
SOLID-STATE ELECTRONICS, 2004, 48 (03) :445-452
[6]   Nanocrystal nonvolatile memory devices [J].
De Blauwe, J .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2002, 1 (01) :72-77
[7]   Critical MOSFETs operation for low voltage low power IC's: Ideal characteristics, parameter extraction, electrical noise and RTS fluctuations [J].
Ghibaudo, G .
MICROELECTRONIC ENGINEERING, 1997, 39 (1-4) :31-57
[8]   The effects of oxidation conditions on structural and electrical properties of silicon nanoparticles obtained by ultra-low-energy ion implantation [J].
Grisolia, J ;
Shalchian, M ;
Ben Assayag, G ;
Coffin, H ;
Bonafos, C ;
Schamm, S ;
Atarodi, SM ;
Claverie, A .
NANOTECHNOLOGY, 2005, 16 (12) :2987-2992
[9]   Fast and long retention-time nano-crystal memory [J].
Hanafi, HI ;
Tiwari, S ;
Khan, I .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1996, 43 (09) :1553-1558
[10]   Electron trapping, storing, and emission in nanocrystalline Si dots by capacitance-voltage and conductance-voltage measurements [J].
Huang, SY ;
Banerjee, S ;
Tung, RT ;
Oda, S .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (01) :576-581