Detection of Mixed Infection from Bacterial Whole Genome Sequence Data Allows Assessment of Its Role in Clostridium difficile Transmission

被引:57
作者
Eyre, David W. [1 ,2 ]
Cule, Madeleine L. [2 ,3 ]
Griffiths, David [1 ,3 ]
Crook, Derrick W. [1 ,3 ]
Peto, Tim E. A. [1 ,3 ]
Walker, A. Sarah [1 ,3 ,4 ]
Wilson, Daniel J. [1 ,5 ]
机构
[1] Univ Oxford, John Radcliffe Hosp, Nuffield Dept Clin Med, Oxford OX3 9DU, England
[2] John Radcliffe Hosp, NIHR Oxford Biomed Res Ctr, Oxford OX3 9DU, England
[3] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[4] MRC, Clin Trials Unit, London, England
[5] Wellcome Trust Ctr Human Genet, Oxford, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
TANDEM-REPEAT ANALYSIS; EVOLUTIONARY DYNAMICS; OUTBREAK; COEXISTENCE; GENERATION;
D O I
10.1371/journal.pcbi.1003059
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Bacterial whole genome sequencing offers the prospect of rapid and high precision investigation of infectious disease outbreaks. Close genetic relationships between microorganisms isolated from different infected cases suggest transmission is a strong possibility, whereas transmission between cases with genetically distinct bacterial isolates can be excluded. However, undetected mixed infections-infection with >= 2 unrelated strains of the same species where only one is sequenced-potentially impairs exclusion of transmission with certainty, and may therefore limit the utility of this technique. We investigated the problem by developing a computationally efficient method for detecting mixed infection without the need for resource-intensive independent sequencing of multiple bacterial colonies. Given the relatively low density of single nucleotide polymorphisms within bacterial sequence data, direct reconstruction of mixed infection haplotypes from current short-read sequence data is not consistently possible. We therefore use a two-step maximum likelihood-based approach, assuming each sample contains up to two infecting strains. We jointly estimate the proportion of the infection arising from the dominant and minor strains, and the sequence divergence between these strains. In cases where mixed infection is confirmed, the dominant and minor haplotypes are then matched to a database of previously sequenced local isolates. We demonstrate the performance of our algorithm with in silico and in vitro mixed infection experiments, and apply it to transmission of an important healthcare-associated pathogen, Clostridium difficile. Using hospital ward movement data in a previously described stochastic transmission model, 15 pairs of cases enriched for likely transmission events associated with mixed infection were selected. Our method identified four previously undetected mixed infections, and a previously undetected transmission event, but no direct transmission between the pairs of cases under investigation. These results demonstrate that mixed infections can be detected without additional sequencing effort, and this will be important in assessing the extent of cryptic transmission in our hospitals.
引用
收藏
页数:12
相关论文
共 34 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   Defining criteria to interpret multilocus variable-number tandem repeat analysis to aid Clostridium difficile outbreak investigation [J].
Broukhanski, George ;
Simor, Andrew ;
Pillai, Dylan R. .
JOURNAL OF MEDICAL MICROBIOLOGY, 2011, 60 (08) :1095-1100
[3]   The Origin of the Haitian Cholera Outbreak Strain. [J].
Chin, Chen-Shan ;
Sorenson, Jon ;
Harris, Jason B. ;
Robins, William P. ;
Charles, Richelle C. ;
Jean-Charles, Roger R. ;
Bullard, James ;
Webster, Dale R. ;
Kasarskis, Andrew ;
Peluso, Paul ;
Paxinos, Ellen E. ;
Yamaichi, Yoshiharu ;
Calderwood, Stephen B. ;
Mekalanos, John J. ;
Schadt, Eric E. ;
Waldor, Matthew K. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 364 (01) :33-42
[4]   Clinical Practice Guidelines for Clostridium difficile Infection in Adults: 2010 Update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA) [J].
Cohen, Stuart H. ;
Gerding, Dale N. ;
Johnson, Stuart ;
Kelly, Ciaran P. ;
Loo, Vivian G. ;
McDonald, L. Clifford ;
Pepin, Jacques ;
Wilcox, Mark H. .
INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 2010, 31 (05) :431-455
[5]  
Cule ML, 2012, P ID WEEK 17 21 OCT
[6]   Microevolutionary analysis of Clostridium difficile genomes to investigate transmission [J].
Didelot, Xavier ;
Eyre, David W. ;
Cule, Madeleine ;
Ip, Camilla L. C. ;
Ansari, M. Azim ;
Griffiths, David ;
Vaughan, Alison ;
O'Connor, Lily ;
Golubchik, Tanya ;
Batty, Elizabeth M. ;
Piazza, Paolo ;
Wilson, Daniel J. ;
Bowden, Rory ;
Donnelly, Peter J. ;
Dingle, Kate E. ;
Wilcox, Mark ;
Walker, A. Sarah ;
Crook, Derrick W. ;
Peto, Tim E. A. ;
Harding, Rosalind M. .
GENOME BIOLOGY, 2012, 13 (12) :R118
[7]   Transforming clinical microbiology with bacterial genome sequencing [J].
Didelot, Xavier ;
Bowden, Rory ;
Wilson, Daniel J. ;
Peto, Tim E. A. ;
Crook, Derrick W. .
NATURE REVIEWS GENETICS, 2012, 13 (09) :601-612
[8]   A pilot study of rapid benchtop sequencing of Staphylococcus aureus and Clostridium difficile for outbreak detection and surveillance [J].
Eyre, David W. ;
Golubchik, Tanya ;
Gordon, N. Claire ;
Bowden, Rory ;
Piazza, Paolo ;
Batty, Elizabeth M. ;
Ip, Camilla L. C. ;
Wilson, Daniel J. ;
Didelot, Xavier ;
O'Connor, Lily ;
Lay, Rochelle ;
Buck, David ;
Kearns, Angela M. ;
Shaw, Angela ;
Paul, John ;
Wilcox, Mark H. ;
Donnelly, Peter J. ;
Peto, Tim E. A. ;
Walker, A. Sarah ;
Crook, Derrick W. .
BMJ OPEN, 2012, 2 (03)
[9]   Clostridium difficile Mixed Infection and Reinfection [J].
Eyre, David W. ;
Walker, A. Sarah ;
Griffiths, David ;
Wilcox, Mark H. ;
Wyllie, David H. ;
Dingle, Kate E. ;
Crook, Derrick W. ;
Peto, Tim E. A. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2012, 50 (01) :142-144
[10]  
Eyre DW, 2012, P ROYAL SOC MED PUBL