Adversarial domain translation networks for integrating large-scale atlas-level single-cell datasets

被引:27
作者
Zhao, Jia [1 ]
Wang, Gefei [1 ]
Ming, Jingsi [2 ]
Lin, Zhixiang [3 ]
Wang, Yang [1 ,4 ]
Wu, Angela Ruohao [5 ,6 ,7 ]
Yang, Can [1 ,4 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
[2] East China Normal Univ, Acad Stat & Interdisciplinary Sci, KLATASDS MOE, Shanghai, Peoples R China
[3] Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China
[4] Hong Kong Univ Sci & Technol, Guangdong Hong Kong Macao Joint Lab Data Driven F, Hong Kong, Peoples R China
[5] Hong Kong Univ Sci & Technol, Div Life Sci, Hong Kong, Peoples R China
[6] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Hong Kong, Peoples R China
[7] Hong Kong Univ Sci & Technol, Ctr Aging Sci, Hong Kong, Peoples R China
来源
NATURE COMPUTATIONAL SCIENCE | 2022年 / 2卷 / 05期
关键词
TRANSCRIPTOME; DIVERSITY; MACAQUE; STEM;
D O I
10.1038/s43588-022-00251-y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The rapid emergence of large-scale atlas-level single-cell RNA-seq datasets presents remarkable opportunities for broad and deep biological investigations through integrative analyses. However, harmonizing such datasets requires integration approaches to be not only computationally scalable, but also capable of preserving a wide range of fine-grained cell populations. We have created Portal, a unified framework of adversarial domain translation to learn harmonized representations of datasets. When compared to other state-of-the-art methods, Portal achieves better performance for preserving biological variation during integration, while achieving the integration of millions of cells, in minutes, with low memory consumption. We show that Portal is widely applicable to integrating datasets across different samples, platforms and data types. We also apply Portal to the integration of cross-species datasets with limited shared information among them, elucidating biological insights into the similarities and divergences in the spermatogenesis process among mouse, macaque and human.
引用
收藏
页码:317 / 330
页数:14
相关论文
共 56 条
[1]  
[Anonymous], 3K PERIPHERAL BLOOD
[2]  
Arjovsky M., 2017, Towards principled methods for training generative adversarial networks
[3]   Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development [J].
Bendall, Sean C. ;
Davis, Kara L. ;
Amir, El-ad David ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Chen, Tiffany J. ;
Shenfeld, Daniel K. ;
Nolan, Garry P. ;
Pe'er, Dana .
CELL, 2014, 157 (03) :714-725
[4]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[5]   MARS: discovering novel cell types across heterogeneous single-cell experiments [J].
Brbic, Maria ;
Zitnik, Marinka ;
Wang, Sheng ;
Pisco, Angela O. ;
Altman, Russ B. ;
Darmanis, Spyros ;
Leskovec, Jure .
NATURE METHODS, 2020, 17 (12) :1200-+
[6]   A test metric for assessing single-cell RNA-seq batch correction [J].
Buettner, Maren ;
Miao, Zhichao ;
Wolf, F. Alexander ;
Teichmann, Sarah A. ;
Theis, Fabian J. .
NATURE METHODS, 2019, 16 (01) :43-+
[7]   Flexible comparison of batch correction methods for single-cell RNA-seq using BatchBench [J].
Chazarra-Gil, Ruben ;
van Dongen, Stijn ;
Kiselev, Vladimir Yu ;
Hemberg, Martin .
NUCLEIC ACIDS RESEARCH, 2021, 49 (07)
[8]   StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [J].
Choi, Yunjey ;
Choi, Minje ;
Kim, Munyoung ;
Ha, Jung-Woo ;
Kim, Sunghun ;
Choo, Jaegul .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8789-8797
[9]   Defining the functional divergence of orthologous genes between human and mouse in the context of miRNA regulation [J].
Cui, Chunmei ;
Zhou, Yuan ;
Cui, Qinghua .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
[10]   Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression [J].
Cuomo, Anna S. E. ;
Seaton, Daniel D. ;
McCarthy, Davis J. ;
Martinez, Iker ;
Bonder, Marc Jan ;
Garcia-Bernardo, Jose ;
Amatya, Shradha ;
Madrigal, Pedro ;
Isaacson, Abigail ;
Buettner, Florian ;
Knights, Andrew ;
Natarajan, Kedar Nath ;
Vallier, Ludovic ;
Marioni, John C. ;
Chhatriwala, Mariya ;
Stegle, Oliver .
NATURE COMMUNICATIONS, 2020, 11 (01)