A tight upper bound on the number of candidate patterns

被引:15
|
作者
Geerts, F [1 ]
Goethals, B [1 ]
Van den Bussche, J [1 ]
机构
[1] Limburgs Univ Ctr, Limburg, Belgium
来源
2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS | 2001年
关键词
D O I
10.1109/ICDM.2001.989513
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the context of mining for frequent patterns using the standard levelwise algorithm, the following question arises: given the current level and the current set of frequent patterns, what is the maximal number of candidate patterns that can be generated on the next level? We answer this question by providing a tight tipper bound, derived from a combinatorial result front the sixties by, Kruskal and Katona. Our result is useful to reduce the number of database scans.
引用
收藏
页码:155 / 162
页数:8
相关论文
共 50 条
  • [1] Tight upper bounds on the number of candidate patterns
    Geerts, F
    Goethals, B
    Van den Bussche, J
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2005, 30 (02): : 333 - 363
  • [2] The tight upper bound for the number of matchings of tricyclic graphs
    Dolati, Ardeshir
    Golalizadeh, Somayyeh
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [3] A tight upper bound on the number of cyclically adjacent transpositions to sort a permutation
    van Zuylen, Anke
    Bieron, James
    Schalekamp, Frans
    Yu, Gexin
    INFORMATION PROCESSING LETTERS, 2016, 116 (11) : 718 - 722
  • [4] A TIGHT UPPER BOUND FOR THE NUMBER OF INTERSECTIONS BETWEEN 2 RECTANGULAR PATHS
    TEO, KH
    TUAN, TC
    BIT, 1991, 31 (04): : 598 - 606
  • [5] A tight upper bound on the number of non-zero weights of a constacyclic code
    Zhang, Hanglong
    Cao, Xiwang
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 93
  • [6] A tight upper bound on the (2, 1)-total labeling number of outerplanar graphs
    Hasunuma, Toru
    Ishii, Toshimasa
    Ono, Hirotaka
    Uno, Yushi
    JOURNAL OF DISCRETE ALGORITHMS, 2012, 14 : 189 - 206
  • [7] Sum coloring and interval graphs: a tight upper bound for the minimum number of colors
    Nicoloso, S
    DISCRETE MATHEMATICS, 2004, 280 (1-3) : 251 - 257
  • [8] A Tight Upper Bound on the Number of Non-Zero Weights of a Cyclic Code
    Chen, Bocong
    Zhang, Guanghui
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (02) : 995 - 1004
  • [9] Bushiness and a tight worst-case upper bound on the search number of a simple polygon
    Suzuki, I
    Yamashita, M
    Umemoto, H
    Kameda, T
    INFORMATION PROCESSING LETTERS, 1998, 66 (01) : 49 - 52
  • [10] Tight upper bound on discrete entropy
    Nanyang Technological Univ, Singapore
    IEEE Trans Inf Theory, 2 (775-778):