SiamGauss: Siamese region proposal network with Gaussian head for visual object tracking

被引:0
|
作者
Taufique, Abu Md Niamul [1 ]
Minnehan, Breton [2 ]
Savakis, Andreas [1 ]
机构
[1] Rochester Inst Technol, Rochester, NY 14623 USA
[2] Air Force Res Lab, Wright Patterson AFB, OH USA
关键词
visual object tracking; Siamese networks; Gaussian adaptation;
D O I
10.1117/1.JRS.16.036501
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We propose SiamGauss, a Siamese region proposal network with a Gaussian head for single-target visual object tracking for aerial benchmarks. Visual tracking in aerial videos faces unique challenges due to the large field of view resulting in small size objects, similar looking objects (confusers) in close proximity, occlusions, and fast motion due to simultaneous object and camera motion. In Siamese tracking, a cross-correlation ration is performed in the embedding space to obtain a similarity map of the target within a search frame, which is then used to localize the target. The proposed Gaussian head helps suppress the activation produced in the similarity map on confusers present in the search frame during training while boosting the confidence on the target. This activation suppression improves the confuser awareness of our tracker. In addition, improving the activation on the target helps maintain tracking consistency in fast motion. Our proposed Gaussian head is only applied during training and introduces no additional computational overhead during inference while tracking. Thus, SiamGauss achieves fast runtime performance. We evaluate our method on multiple aerial benchmarks showing that SiamGauss performs favorably with state-of-the-art trackers while rating at a frame rate of 96 frames per second. (C) 2022 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:17
相关论文
共 50 条
  • [21] SIAMESE FEATURE PYRAMID NETWORK FOR VISUAL TRACKING
    Chang, Shuo
    Zhang, Fan
    Huang, Sai
    Yao, Yuanyuan
    Zhao, Xiaotong
    Feng, Zhiyong
    2019 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS IN CHINA (ICCC WORKSHOPS), 2019, : 164 - 168
  • [22] Siamese residual network for efficient visual tracking
    Fan, Nana
    Liu, Qiao
    Li, Xin
    Zhou, Zikun
    He, Zhenyu
    INFORMATION SCIENCES, 2023, 624 : 606 - 623
  • [23] Exemplar Loss for Siamese Network in Visual Tracking
    Chang, Shuo
    Lu, Hua
    Huang, Sai
    Zhang, Yifan
    2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 1405 - 1412
  • [24] Keypoint prediction enhanced Siamese networks with attention for accurate visual object tracking
    Sakthi, K. S. Sachin
    Joo, Young Hoon
    Jeong, Jae Hoon
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 268
  • [25] Visual Object Tracking for Unmanned Aerial Vehicles Based on the Template-Driven Siamese Network
    Sun, Lifan
    Yang, Zhe
    Zhang, Jinjin
    Fu, Zhumu
    He, Zishu
    REMOTE SENSING, 2022, 14 (07)
  • [26] Object-Aware Adaptive Convolution Kernel Attention Mechanism in Siamese Network for Visual Tracking
    Yuan, Dongliang
    Li, Qingdang
    Yang, Xiaohui
    Zhang, Mingyue
    Sun, Zhen
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [27] SiamCross: Siamese Cross Object-Aware Networks for Visual Object Tracking
    Huang W.-H.
    Feng Y.
    Qiang B.-H.
    Pei Y.-X.
    Luo Y.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (10): : 2151 - 2166
  • [28] Siamese Graph Attention Networks for robust visual object tracking
    Lu, Junjie
    Li, Shengyang
    Guo, Weilong
    Zhao, Manqi
    Yang, Jian
    Liu, Yunfei
    Zhou, Zhuang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 229
  • [29] Distractor-Aware Siamese Networks for Visual Object Tracking
    Zhu, Zheng
    Wang, Qiang
    Li, Bo
    Wu, Wei
    Yan, Junjie
    Hu, Weiming
    COMPUTER VISION - ECCV 2018, PT IX, 2018, 11213 : 103 - 119
  • [30] SiamFFN: Siamese Feature Fusion Network for Visual Tracking
    Bao, Jiahao
    Yan, Menglong
    Yang, Yiran
    Chen, Kaiqiang
    ELECTRONICS, 2023, 12 (07)