SiamGauss: Siamese region proposal network with Gaussian head for visual object tracking

被引:0
|
作者
Taufique, Abu Md Niamul [1 ]
Minnehan, Breton [2 ]
Savakis, Andreas [1 ]
机构
[1] Rochester Inst Technol, Rochester, NY 14623 USA
[2] Air Force Res Lab, Wright Patterson AFB, OH USA
关键词
visual object tracking; Siamese networks; Gaussian adaptation;
D O I
10.1117/1.JRS.16.036501
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We propose SiamGauss, a Siamese region proposal network with a Gaussian head for single-target visual object tracking for aerial benchmarks. Visual tracking in aerial videos faces unique challenges due to the large field of view resulting in small size objects, similar looking objects (confusers) in close proximity, occlusions, and fast motion due to simultaneous object and camera motion. In Siamese tracking, a cross-correlation ration is performed in the embedding space to obtain a similarity map of the target within a search frame, which is then used to localize the target. The proposed Gaussian head helps suppress the activation produced in the similarity map on confusers present in the search frame during training while boosting the confidence on the target. This activation suppression improves the confuser awareness of our tracker. In addition, improving the activation on the target helps maintain tracking consistency in fast motion. Our proposed Gaussian head is only applied during training and introduces no additional computational overhead during inference while tracking. Thus, SiamGauss achieves fast runtime performance. We evaluate our method on multiple aerial benchmarks showing that SiamGauss performs favorably with state-of-the-art trackers while rating at a frame rate of 96 frames per second. (C) 2022 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:17
相关论文
共 50 条
  • [11] SiamMN: Siamese modulation network for visual object tracking
    Fu, Li-hua
    Ding, Yu
    Du, Yu-bin
    Zhang, Bo
    Wang, Lu-yuan
    Wang, Dan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (43-44) : 32623 - 32641
  • [12] Visual Object Tracking by Hierarchical Attention Siamese Network
    Shen, Jianbing
    Tang, Xin
    Dong, Xingping
    Shao, Ling
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3068 - 3080
  • [13] SiamMN: Siamese modulation network for visual object tracking
    Li-hua Fu
    Yu Ding
    Yu-bin Du
    Bo Zhang
    Lu-yuan Wang
    Dan Wang
    Multimedia Tools and Applications, 2020, 79 : 32623 - 32641
  • [14] An End-to-End Dehazing Siamese Region Proposal Network for High Robustness Object Tracking
    Han, Kun
    Peng, Jiajing
    Yang, Qiongqian
    Tian, Wentao
    IEEE ACCESS, 2021, 9 : 91983 - 91994
  • [15] Visual tracking using Siamese convolutional neural network with region proposal and domain specific updating
    Zhang, Han
    Ni, Weiping
    Yan, Weidong
    Wu, Junzheng
    Bian, Hui
    Xiang, Deliang
    NEUROCOMPUTING, 2018, 275 : 2645 - 2655
  • [16] IoU-guided Siamese region proposal network for real-time visual tracking
    Zhou, Lifang
    He, Yu
    Li, Weisheng
    Mi, Jianxun
    Lei, Bangjun
    NEUROCOMPUTING, 2021, 462 : 544 - 554
  • [17] Siamese Network Based on MLP and Multi-head Cross Attention for Visual Object Tracking
    Li, Piaoyang
    Lan, Shiyong
    Sun, Shipeng
    Wang, Wenwu
    Gao, Yongyang
    Yang, Yongyu
    Yu, Guangyu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PART X, 2023, 14263 : 420 - 431
  • [18] A Dynamic Adjust-Head Siamese network for object tracking
    Qiu, Shoumeng
    Gu, Yuzhang
    Chen, Minghong
    Yuan, Zeqiang
    Yao, Zehao
    Zhang, Xiaolin
    IET COMPUTER VISION, 2023, 17 (02) : 203 - 210
  • [19] MASNet: mixed attention Siamese network for visual object tracking
    Zhang, Jianwei
    Zhang, Zhichen
    Zhang, Huanlong
    Wang, Jingchao
    Wang, He
    Zheng, Menya
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [20] Siamese Attentional Cascade Keypoints Network for Visual Object Tracking
    Wang, Ershen
    Wang, Donglei
    Huang, Yufeng
    Tong, Gang
    Xu, Song
    Pang, Tao
    IEEE ACCESS, 2021, 9 : 7243 - 7254