SiamGauss: Siamese region proposal network with Gaussian head for visual object tracking

被引:0
|
作者
Taufique, Abu Md Niamul [1 ]
Minnehan, Breton [2 ]
Savakis, Andreas [1 ]
机构
[1] Rochester Inst Technol, Rochester, NY 14623 USA
[2] Air Force Res Lab, Wright Patterson AFB, OH USA
关键词
visual object tracking; Siamese networks; Gaussian adaptation;
D O I
10.1117/1.JRS.16.036501
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We propose SiamGauss, a Siamese region proposal network with a Gaussian head for single-target visual object tracking for aerial benchmarks. Visual tracking in aerial videos faces unique challenges due to the large field of view resulting in small size objects, similar looking objects (confusers) in close proximity, occlusions, and fast motion due to simultaneous object and camera motion. In Siamese tracking, a cross-correlation ration is performed in the embedding space to obtain a similarity map of the target within a search frame, which is then used to localize the target. The proposed Gaussian head helps suppress the activation produced in the similarity map on confusers present in the search frame during training while boosting the confidence on the target. This activation suppression improves the confuser awareness of our tracker. In addition, improving the activation on the target helps maintain tracking consistency in fast motion. Our proposed Gaussian head is only applied during training and introduces no additional computational overhead during inference while tracking. Thus, SiamGauss achieves fast runtime performance. We evaluate our method on multiple aerial benchmarks showing that SiamGauss performs favorably with state-of-the-art trackers while rating at a frame rate of 96 frames per second. (C) 2022 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Online Siamese Network for Visual Object Tracking
    Chang, Shuo
    Li, Wei
    Zhang, Yifan
    Feng, Zhiyong
    SENSORS, 2019, 19 (08)
  • [2] Siamese Feedback Network for Visual Object Tracking
    Gwon M.-G.
    Kim J.
    Um G.-M.
    Lee H.
    Seo J.
    Lim S.Y.
    Yang S.-J.
    Kim W.
    IEIE Transactions on Smart Processing and Computing, 2022, 11 (01) : 24 - 33
  • [3] SiamMN: Siamese modulation network for visual object tracking
    Fu, Li-hua
    Ding, Yu
    Du, Yu-bin
    Zhang, Bo
    Wang, Lu-yuan
    Wang, Dan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (43-44) : 32623 - 32641
  • [4] SiamMN: Siamese modulation network for visual object tracking
    Li-hua Fu
    Yu Ding
    Yu-bin Du
    Bo Zhang
    Lu-yuan Wang
    Dan Wang
    Multimedia Tools and Applications, 2020, 79 : 32623 - 32641
  • [5] Siamese Network Based on MLP and Multi-head Cross Attention for Visual Object Tracking
    Li, Piaoyang
    Lan, Shiyong
    Sun, Shipeng
    Wang, Wenwu
    Gao, Yongyang
    Yang, Yongyu
    Yu, Guangyu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PART X, 2023, 14263 : 420 - 431
  • [6] Siamese Attentional Cascade Keypoints Network for Visual Object Tracking
    Wang, Ershen
    Wang, Donglei
    Huang, Yufeng
    Tong, Gang
    Xu, Song
    Pang, Tao
    IEEE ACCESS, 2021, 9 : 7243 - 7254
  • [7] Siamese Visual Object Tracking: A Survey
    Ondrasovic, Milan
    Tarabek, Peter
    IEEE ACCESS, 2021, 9 : 110149 - 110172
  • [8] SiamDMU: Siamese Dual Mask Update Network for Visual Object Tracking
    Liu, Jing
    Wang, Han
    Ma, Chao
    Su, Yuting
    Yang, Xiaokang
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (02): : 1656 - 1669
  • [9] A novel Siamese Attention Network for visual object tracking of autonomous vehicles
    Chen, Jia
    Ai, Yibo
    Qian, Yuhan
    Zhang, Weidong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2021, 235 (10-11) : 2764 - 2775
  • [10] Target-Cognisant Siamese Network for Robust Visual Object Tracking *
    Jiang, Yingjie
    Song, Xiaoning
    Xu, Tianyang
    Feng, Zhenhua
    Wu, Xiaojun
    Kittler, Josef
    PATTERN RECOGNITION LETTERS, 2022, 163 : 129 - 135