Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes

被引:28
作者
Buet, Christophe [1 ]
Despres, Bruno [2 ]
Franck, Emmanuel [1 ,2 ]
机构
[1] DIF, DAM, CEA, F-91297 Arpajon, France
[2] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris 05, France
关键词
WELL-BALANCED SCHEME; STIFF RELAXATION; CONVERGENCE; TERMS;
D O I
10.1007/s00211-012-0457-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an asymptotic preserving nodal discretization of the hyperbolic heat equation, also known as the P (1) equation, on unstructured meshes in 2-D. This method, in diffusive regime, overcomes the problem of the inconsistent limit with diffusion, of classical multidimensional extensions of 1-D asymptotic preserving schemes, based on edge formulation. We provide both theoretical and numerical results.
引用
收藏
页码:227 / 278
页数:52
相关论文
共 26 条
  • [1] Numerical convergence of the MPFA O-method and U-method for general quadrilateral grids
    Aavatsmark, I.
    Eigestad, G. T.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2006, 51 (9-10) : 939 - 961
  • [2] Allaire G., 2007, NUMERICAL ANAL OPTIM, P42
  • [3] A cell-centered diffusion scheme on two-dimensional unstructured meshes
    Breil, Jerome
    Maire, Pierre-Henri
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (02) : 785 - 823
  • [4] Brunner T., THESIS LOS ALAMOS
  • [5] Diffusion limit of the Lorentz model: Asymptotic preserving schemes
    Buet, C
    Cordier, S
    Lucquin-Desreux, B
    Mancini, S
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (04): : 631 - 655
  • [6] Asymptotic preserving and positive schemes for radiation hydrodynamics
    Buet, Christophe
    Despres, Bruno
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 215 (02) : 717 - 740
  • [7] A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension
    Carre, G.
    Del Pino, S.
    Despres, B.
    Labourasse, E.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (14) : 5160 - 5183
  • [8] An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field
    Degond, P.
    Deluzet, F.
    Sangam, A.
    Vignal, M. -H.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (10) : 3540 - 3558
  • [9] Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension
    Despres, Bruno
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (41-44) : 2669 - 2679
  • [10] CONSTRUCTION AND CONVERGENCE STUDY OF SCHEMES PRESERVING THE ELLIPTIC LOCAL MAXIMUM PRINCIPLE
    Droniou, Jerome
    Le Potier, Christophe
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) : 459 - 490