Grammatical Inference with Grammar-based Classifier System

被引:0
作者
Unold, Olgierd [1 ]
机构
[1] Wroclaw Univ Technol, Inst Comp Engn Control & Robot, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
来源
NEW ASPECTS OF SYSTEMS, PTS I AND II | 2008年
关键词
Machine Learning; Grammatical Inference; Learning Classifier Systems; Natural Language Processing; Promoter Recognition;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper takes up the topic of a task of training Grammar-based Classifier System (GCS) to learn grammar from data. GCS is a new model of Learning Classifier Systems in which the population of classifiers has a form of a context-free grammar rule set in a Chomsky Normal Form. GCS has been proposed to address both the natural language grammar induction and also learning formal grammar for DNA sequence. In both cases near-optimal solutions or better than reported in the literature were obtained.
引用
收藏
页码:707 / +
页数:2
相关论文
共 37 条
  • [1] Angluin D., 1988, Machine Learning, V2, P319, DOI 10.1007/BF00116828
  • [2] AYCINENA M, 2003, EVOLUTIONARY APPROAC
  • [3] Bianchi D., 1996, P 1 ONL WORKSH SOFT, P113
  • [4] The complete genome sequence of Escherichia coli K-12
    Blattner, FR
    Plunkett, G
    Bloch, CA
    Perna, NT
    Burland, V
    Riley, M
    ColladoVides, J
    Glasner, JD
    Rode, CK
    Mayhew, GF
    Gregor, J
    Davis, NW
    Kirkpatrick, HA
    Goeden, MA
    Rose, DJ
    Mau, B
    Shao, Y
    [J]. SCIENCE, 1997, 277 (5331) : 1453 - +
  • [5] GRAMMATICAL MODEL OF THE REGULATION OF GENE-EXPRESSION
    COLLADOVIDES, J
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (20) : 9405 - 9409
  • [6] Cyre W, 2002, IEEE C EVOL COMPUTAT, P1366, DOI 10.1109/CEC.2002.1004442
  • [7] De la Higuera C, 2000, LECT NOTES COMPUT SC, V1876, P28
  • [8] Durbin R., 1998, BIOL SEQUENCE ANAL
  • [9] LANGUAGE IDENTIFICATION IN LIMIT
    GOLD, EM
    [J]. INFORMATION AND CONTROL, 1967, 10 (05): : 447 - &
  • [10] Holland J., 1986, MACHINE LEARNING ART