Time-resolved detection of spin-orbit torque switching of magnetization and exchange bias

被引:18
作者
Wang, Yuyan [1 ,2 ,3 ]
Taniguchi, Takuya [2 ]
Lin, Po-Hung [4 ]
Zicchino, Daniel [2 ]
Nickl, Andreas [2 ]
Sahliger, Jan [2 ]
Lai, Chih-Huang [4 ]
Song, Cheng [5 ]
Wu, Huaqiang [1 ,3 ]
Dai, Qionghai [1 ]
Back, Christian H. [2 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing, Peoples R China
[2] Tech Univ Munich, Dept Phys, Garching, Germany
[3] Tsinghua Univ, Sch Integrated Circuits, Beijing, Peoples R China
[4] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu, Taiwan
[5] Tsinghua Univ, Sch Mat Sci & Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
DYNAMICS;
D O I
10.1038/s41928-022-00870-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Current-induced magnetization switching driven by spin-orbit torques on sub-nanosecond timescales could be used to create fast and low-power spintronic devices. The time-resolved detection and analysis of switching trajectories in ferromagnet/antiferromagnet exchange-biased structures are the key to designing spin-orbit torque devices with high speed, but insight remains limited. Here we report the time-resolved detection of spin-orbit torque switching of the magnetization and exchange bias in platinum/cobalt/iridium-manganese heterostructures. Using time-resolved magneto-optical Kerr microscopy, combined with micromagnetic simulations, we show that the ferromagnets, as well as interfacial antiferromagnetic spins and exchange bias, can be partially switched by sub-nanosecond current pulses, which allows the switching probabilities to be flexibly controlled at multiple levels. We also show that the spin-orbit-torque-induced switching of the exchange bias, which intimately depends on the current density, can stabilize multilevelled magnetization switching within sub-nanosecond current pulses. Time-resolved magneto-optical Kerr microscopy, combined with micromagnetic simulations, can be used to detect spin-orbit torque switching of the magnetization and exchange bias in platinum/cobalt/iridium-manganese heterostructures on sub-nanosecond timescales.
引用
收藏
页码:840 / 848
页数:9
相关论文
共 40 条
[1]   Antiferromagnetic spintronics [J].
Baltz, V. ;
Manchon, A. ;
Tsoi, M. ;
Moriyama, T. ;
Ono, T. ;
Tserkovnyak, Y. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[2]  
Baumgartner M, 2017, NAT NANOTECHNOL, V12, P980, DOI [10.1038/NNANO.2017.151, 10.1038/nnano.2017.151]
[3]   Ultrafast and energy-efficient spin-orbit torque switching in compensated ferrimagnets [J].
Cai, Kaiming ;
Zhu, Zhifeng ;
Lee, Jong Min ;
Mishra, Rahul ;
Ren, Lizhu ;
Pollard, Shawn D. ;
He, Pan ;
Liang, Gengchiau ;
Teo, Kie Leong ;
Yang, Hyunsoo .
NATURE ELECTRONICS, 2020, 3 (01) :37-42
[4]   Modelling compensated antiferromagnetic interfaces with MuMax3 [J].
De Clercq, Jonas ;
Leliaert, Jonathan ;
Van Waeyenberge, Bartel .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (42)
[5]   Modelling exchange bias with MuMax3 [J].
De Clercq, Jonas ;
Vansteenkiste, Arne ;
Abes, Medjid ;
Temst, Kristiaan ;
Van Waeyenberge, Bartel .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (43)
[6]   Time Resolved Measurements of the Switching Trajectory of Pt/Co Elements Induced by Spin-Orbit Torques [J].
Decker, M. M. ;
Woernle, M. S. ;
Meisinger, A. ;
Vogel, M. ;
Koerner, H. S. ;
Shi, G. Y. ;
Song, C. ;
Kronseder, M. ;
Back, C. H. .
PHYSICAL REVIEW LETTERS, 2017, 118 (25)
[7]   Perpendicular Exchange Bias in (Co/Pt)n Multilayers [J].
Elphick, K. ;
O'Grady, K. ;
Vallejo-Fernandez, G. .
IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (07)
[8]   Antiferromagnetic domain size and exchange bias [J].
Fitzsimmons, M. R. ;
Lederman, D. ;
Cheon, M. ;
Shi, H. ;
Olamit, J. ;
Roshchin, Igor V. ;
Schuller, Ivan K. .
PHYSICAL REVIEW B, 2008, 77 (22)
[9]   Enhanced Spin Pumping Efficiency in Antiferromagnetic IrMn Thin Films around the Magnetic Phase Transition [J].
Frangou, L. ;
Oyarzun, S. ;
Auffret, S. ;
Vila, L. ;
Gambarelli, S. ;
Baltz, V. .
PHYSICAL REVIEW LETTERS, 2016, 116 (07)
[10]  
Fukami S, 2016, NAT MATER, V15, P535, DOI [10.1038/nmat4566, 10.1038/NMAT4566]