Periodic Solutions of an Indefinite Singular Equation Arising from the Kepler Problem on the Sphere

被引:9
作者
Hakl, Robert [1 ]
Zamora, Manuel [2 ]
机构
[1] AS CR, Inst Math, Prague, Czech Republic
[2] Univ Bio Bio, Dept Matemat, GISDA, Casilla 5-C, Concepcion, Chile
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2018年 / 70卷 / 01期
关键词
singular differential equation; indefinite singularity; periodic solution; Kepler problem on S-1; degree theory; CONSTANT CURVATURE SPACES;
D O I
10.4153/CJM-2016-050-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a second-order ordinary differential equation coming from the Kepler problem on S-2. The forcing term under consideration is a piecewise constant with singular nonlinearity that changes sign. We establish necessary and sufficient conditions to the existence and multiplicity of T-periodic solutions.
引用
收藏
页码:173 / 190
页数:18
相关论文
共 9 条
[1]  
[Anonymous], 1913, GEOMETRISCHE UNTERSU
[2]   SUBHARMONIC SOLUTIONS FOR SOME 2ND-ORDER DIFFERENTIAL-EQUATIONS WITH SINGULARITIES [J].
FONDA, A ;
MANASEVICH, R ;
ZANOLIN, F .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (05) :1294-1311
[3]  
Franco-Perez L., 2009, NONLINEAR ANAL TMA, V71, P5131
[4]   KEPLER'S PROBLEM IN CONSTANT CURVATURE SPACES [J].
Kozlov, Valeri V. ;
Harin, Alexander O. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1992, 54 (04) :393-399
[5]  
Lobachevsky N., 1835, COLLECT WORKS, V2, P159
[6]  
Bravo JL, 2010, ADV NONLINEAR STUD, V10, P927
[7]   THE NUMBER OF PERIODIC-SOLUTIONS OF TWO-DIMENSIONAL PERIODIC-SYSTEMS [J].
NAKAJIMA, F ;
SEIFERT, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 49 (03) :430-440
[8]  
Serret P., 1860, THEORIE NOUVELLE GEO
[9]   Nonintegrability of the two-body problem in constant curvature spaces [J].
Shchepetilov, Alexey V. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (20) :5787-5806