Linkage disequilibrium network analysis (LDna) gives a global view of chromosomal inversions, local adaptation and geographic structure

被引:76
作者
Kemppainen, Petri [1 ,2 ]
Knight, Christopher G. [1 ]
Sarma, Devojit K. [1 ,3 ]
Hlaing, Thaung [4 ]
Prakash, Anil [3 ]
Maung, Yan Naung Maung [4 ]
Somboon, Pradya [5 ]
Mahanta, Jagadish [3 ]
Walton, Catherine [1 ]
机构
[1] Univ Manchester, Fac Life Sci, Computat & Evolutionary Biol, Manchester, Lancs, England
[2] Acad Sci Czech Republ, Inst Vertebrate Biol, Brno, Czech Republic
[3] NE ICMR, Reg Med Res Ctr, Dibrugarh 786001, Assam, India
[4] Med Entomol Res Div, Dept Med Res Lower Myanmar, Yangon 11191, Myanmar
[5] Chiang Mai Univ, Fac Med, Dept Parasitol, Chiang Mai 50200, Thailand
基金
英国惠康基金; 英国生物技术与生命科学研究理事会;
关键词
Anopheles dirus; Anopheles gambiae; chromosomal rearrangement; graph theory; landscape genomics; r package; MULTILOCUS GENOTYPE DATA; ANOPHELES-DIRUS COMPLEX; POPULATION-STRUCTURE; EVOLUTIONARY; SPECIATION; MALARIA; REARRANGEMENTS; RECOMBINATION; DIVERGENCE; DISCOVERY;
D O I
10.1111/1755-0998.12369
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in sequencing allow population-genomic data to be generated for virtually any species. However, approaches to analyse such data lag behind the ability to generate it, particularly in nonmodel species. Linkage disequilibrium (LD, the nonrandom association of alleles from different loci) is a highly sensitive indicator of many evolutionary phenomena including chromosomal inversions, local adaptation and geographical structure. Here, we present linkage disequilibrium network analysis (LDna), which accesses information on LD shared between multiple loci genomewide. In LD networks, vertices represent loci, and connections between vertices represent the LD between them. We analysed such networks in two test cases: a new restriction-site-associated DNA sequence (RAD-seq) data set for Anopheles baimaii, a Southeast Asian malaria vector; and a well-characterized single nucleotide polymorphism (SNP) data set from 21 three-spined stickleback individuals. In each case, we readily identified five distinct LD network clusters (single-outlier clusters, SOCs), each comprising many loci connected by high LD. In A.baimaii, further population-genetic analyses supported the inference that each SOC corresponds to a large inversion, consistent with previous cytological studies. For sticklebacks, we inferred that each SOC was associated with a distinct evolutionary phenomenon: two chromosomal inversions, local adaptation, population-demographic history and geographic structure. LDna is thus a useful exploratory tool, able to give a global overview of LD associated with diverse evolutionary phenomena and identify loci potentially involved. LDna does not require a linkage map or reference genome, so it is applicable to any population-genomic data set, making it especially valuable for nonmodel species.
引用
收藏
页码:1031 / 1045
页数:15
相关论文
共 61 条
  • [1] A haplotype map of the human genome
    Altshuler, D
    Brooks, LD
    Chakravarti, A
    Collins, FS
    Daly, MJ
    Donnelly, P
    Gibbs, RA
    Belmont, JW
    Boudreau, A
    Leal, SM
    Hardenbol, P
    Pasternak, S
    Wheeler, DA
    Willis, TD
    Yu, FL
    Yang, HM
    Zeng, CQ
    Gao, Y
    Hu, HR
    Hu, WT
    Li, CH
    Lin, W
    Liu, SQ
    Pan, H
    Tang, XL
    Wang, J
    Wang, W
    Yu, J
    Zhang, B
    Zhang, QR
    Zhao, HB
    Zhao, H
    Zhou, J
    Gabriel, SB
    Barry, R
    Blumenstiel, B
    Camargo, A
    Defelice, M
    Faggart, M
    Goyette, M
    Gupta, S
    Moore, J
    Nguyen, H
    Onofrio, RC
    Parkin, M
    Roy, J
    Stahl, E
    Winchester, E
    Ziaugra, L
    Shen, Y
    [J]. NATURE, 2005, 437 (7063) : 1299 - 1320
  • [2] A road map for molecular ecology
    Andrew, Rose L.
    Bernatchez, Louis
    Bonin, Aurelie
    Buerkle, C. Alex
    Carstens, Bryan C.
    Emerson, Brent C.
    Garant, Dany
    Giraud, Tatiana
    Kane, Nolan C.
    Rogers, Sean M.
    Slate, Jon
    Smith, Harry
    Sork, Victoria L.
    Stone, Graham N.
    Vines, Timothy H.
    Waits, Lisette
    Widmer, Alex
    Rieseberg, Loren H.
    [J]. MOLECULAR ECOLOGY, 2013, 22 (10) : 2605 - 2626
  • [3] [Anonymous], 2006, INTERJOURNALCOMPLEX
  • [4] [Anonymous], GENETICS PACKAGE R P
  • [5] Patterns of linkage disequilibrium in the human genome
    Ardlie, KG
    Kruglyak, L
    Seielstad, M
    [J]. NATURE REVIEWS GENETICS, 2002, 3 (04) : 299 - 309
  • [6] BAIMAI V, 1988, Southeast Asian Journal of Tropical Medicine and Public Health, V19, P661
  • [7] CYTOLOGICAL DIFFERENCES AND CHROMOSOMAL REARRANGEMENTS IN 4 MEMBERS OF THE ANOPHELES-DIRUS COMPLEX (DIPTERA, CULICIDAE)
    BAIMAI, V
    POOPITTAYASATAPORN, A
    KIJCHALAO, U
    [J]. GENOME, 1988, 30 (03) : 372 - 379
  • [8] Estimating linkage disequilibria
    Barton, N. H.
    [J]. HEREDITY, 2011, 106 (02) : 205 - 206
  • [9] Barton NicholasH., 2007, EVOLUTION
  • [10] A comparative genomic analysis of two distant diptera, the fruit fly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae
    Bolshakov, VN
    Topalis, P
    Blass, C
    Kokoza, E
    della Torre, A
    Kafatos, FC
    Louis, C
    [J]. GENOME RESEARCH, 2002, 12 (01) : 57 - 66