c-LASSO and its dual for sparse signal estimation from array data

被引:17
作者
Mecklenbraeuker, Christoph F. [1 ,3 ]
Gerstoft, Peter [2 ]
Zoechmann, Erich [1 ,3 ]
机构
[1] TU Wien, Inst Telecommun, Gusshausstr 25-389, A-1040 Vienna, Austria
[2] Univ Calif San Diego, La Jolla, CA 92093 USA
[3] Christian Doppler Lab Dependable Connect Soc Mot, Vienna, Austria
关键词
Sparsity; c-LASSO; Duality theory; Homotopy; L(1) MINIMIZATION; RECONSTRUCTION; RECOVERY; NOISE; REPRESENTATIONS; SELECTION; PURSUIT; PATH;
D O I
10.1016/j.sigpro.2016.06.029
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We treat the estimation of a sparse set of sources emitting plane waves observed by a sensor array as a complex-valued LASSO (c-LASSO) problem where the usual l(1)-norm constraint is replaced by the l(1)-norm of a matrix D times the solution vector. When the sparsity order is given, algorithmically selecting a suitable value for the c-LASSO regularization parameter remains a challenging task. The corresponding dual problem is formulated and it is shown that the dual solution is useful for selecting the regularization parameter of the c-LASSO. The solution path of the c-LASSO is analyzed and this motivates an order-recursive algorithm for the selection of the regularization parameter and a faster iterative algorithm that is based on a further approximation. This greatly facilitates computation of the c-LASSO path as we can predict the changes in the active indices as the regularization parameter is reduced. Using this regularization parameter, the directions of arrival for all sources are estimated. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:204 / 216
页数:13
相关论文
共 38 条
[1]  
[Anonymous], 1999, Athena scientific Belmont
[2]  
[Anonymous], 2012, MATRIX COMPUTATIONS
[3]   Adaptive Learning in Complex Reproducing Kernel Hilbert Spaces Employing Wirtinger's Subgradients [J].
Bouboulis, Pantelis ;
Slavakis, Konstantinos ;
Theodoridis, Sergios .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (03) :425-438
[4]  
Boyd S, 2004, CONVEX OPTIMIZATION
[5]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[6]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[7]   Super-Resolution from Noisy Data [J].
Candes, Emmanuel J. ;
Fernandez-Granda, Carlos .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (06) :1229-1254
[8]   Towards a Mathematical Theory of Super- resolution [J].
Candes, Emmanuel J. ;
Fernandez-Granda, Carlos .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (06) :906-956
[9]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[10]  
Chen SSB, 2001, SIAM REV, V43, P129, DOI [10.1137/S003614450037906X, 10.1137/S1064827596304010]